FINITENESS DIMENSION AND BASS NUMBERS OF GENERALIZED LOCAL COHOMOLOGY MODULES
2013 ◽
Vol 12
(07)
◽
pp. 1350036
◽
Keyword(s):
Let R be a commutative Noetherian ring, 𝔞 an ideal of R, and M, N two nonzero finitely generated R-modules. Let t be a non-negative integer. It is shown that dim Supp [Formula: see text] for all i < t if and only if there exists an ideal 𝔟 of R such that dim R/𝔟 ≤ 1 and [Formula: see text] for all i < t. As a consequence all Bass numbers and all Betti numbers of generalized local cohomology modules [Formula: see text] are finite for all i < t, provided that the projective dimension pd (M) is finite.
2015 ◽
Vol 15
(01)
◽
pp. 1650019
◽
2015 ◽
Vol 97
(111)
◽
pp. 233-238
◽
2012 ◽
Vol 55
(1)
◽
pp. 81-87
◽
2007 ◽
Vol 83
(2)
◽
pp. 217-226
◽
2019 ◽
Vol 18
(12)
◽
pp. 1950236
2018 ◽
Vol 17
(02)
◽
pp. 1850020
◽
2011 ◽
Vol 54
(4)
◽
pp. 619-629
◽
2015 ◽
Vol 58
(3)
◽
pp. 664-672
◽