graded modules
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 33)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 10 (11) ◽  
pp. 3479-3489
Author(s):  
K. Al-Zoubi ◽  
M. Al-Azaizeh

Let $G$ be an abelian group with identity $e$. Let $R$ be a $G$-graded commutative ring with identity, $M$ a graded $R$-module and $S\subseteq h(R)$ a multiplicatively closed subset of $R$. In this paper, we introduce the concept of graded $S$-prime submodules of graded modules over graded commutative rings. We investigate some properties of this class of graded submodules and their homogeneous components. Let $N$ be a graded submodule of $M$ such that $(N:_{R}M)\cap S=\emptyset $. We say that $N$ is \textit{a graded }$S$\textit{-prime submodule of }$M$ if there exists $s_{g}\in S$ and whenever $a_{h}m_{i}\in N,$ then either $s_{g}a_{h}\in (N:_{R}M)$ or $s_{g}m_{i}\in N$ for each $a_{h}\in h(R) $ and $m_{i}\in h(M).$


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rosa M. Miró-Roig ◽  
Martí Salat-Moltó

Abstract In this paper, we consider Z r \mathbb{Z}^{r} -graded modules on the Cl ⁡ ( X ) \operatorname{Cl}(X) -graded Cox ring C ⁢ [ x 1 , … , x r ] \mathbb{C}[x_{1},\dotsc,x_{r}] of a smooth complete toric variety 𝑋. Using the theory of Klyachko filtrations in the reflexive case, we construct a collection of lattice polytopes codifying the multigraded Hilbert function of the module. We apply this approach to reflexive Z s + r + 2 \mathbb{Z}^{s+r+2} -graded modules over any non-standard bigraded polynomial ring C ⁢ [ x 0 , … , x s , y 0 , … , y r ] \mathbb{C}[x_{0},\dotsc,x_{s},\allowbreak y_{0},\dotsc,y_{r}] . In this case, we give sharp bounds for the multigraded regularity index of their multigraded Hilbert function, and a method to compute their Hilbert polynomial.


2021 ◽  
pp. 1-24
Author(s):  
Mostafa Amini ◽  
Driss Bennis ◽  
Soumia Mamdouhi

2021 ◽  
Vol 8 (28) ◽  
pp. 885-898
Author(s):  
Michael Loper

Virtual resolutions are homological representations of finitely generated Pic ( X ) \text {Pic}(X) -graded modules over the Cox ring of a smooth projective toric variety. In this paper, we identify two algebraic conditions that characterize when a chain complex of graded free modules over the Cox ring is a virtual resolution. We then turn our attention to the saturation of Fitting ideals by the irrelevant ideal of the Cox ring and prove some results that mirror the classical theory of Fitting ideals for Noetherian rings.


Author(s):  
Yuri Bahturin ◽  
Abdallah Shihadeh

In this paper, we explore the possibility of endowing simple infinite-dimensional [Formula: see text]-modules by the structure of graded modules. The gradings on the finite-dimensional simple modules over simple Lie algebras have been studied in 7, 8.


2021 ◽  
pp. 1-19
Author(s):  
Juan Cala ◽  
Patrik Lundström ◽  
Hector Pinedo
Keyword(s):  

2021 ◽  
Vol 13 (1) ◽  
pp. 164-181
Author(s):  
Peyman Ghiasvand ◽  
Farkhonde Farzalipour
Keyword(s):  

Abstract Let G be a group with identity e. Let R be a graded ring, I a graded ideal of R and M be a G-graded R-module. Let ψ: Sgr(M) → S gr(M) ∪ {∅} be a function, where Sgr(M) denote the set of all graded submodules of M. In this article, we introduce and study the concepts of graded ψ -second submodules and graded I-second submodules of a graded R-module which are generalizations of graded second submodules of M and investigate some properties of this class of graded modules.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sergey V. Lapin

Abstract In the present paper, the cyclic homology functor from the category of A ∞ {A_{\infty}} -algebras over any commutative unital ring K to the category of graded K-modules is constructed. Further, it is shown that this functor sends homotopy equivalences of A ∞ {A_{\infty}} -algebras into isomorphisms of graded modules. As a corollary, it is stated that the cyclic homology of an A ∞ {A_{\infty}} -algebra over any field is isomorphic to the cyclic homology of the A ∞ {A_{\infty}} -algebra of homologies for the source A ∞ {A_{\infty}} -algebra.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 734
Author(s):  
Sergey Victor Ludkowski

The article is devoted to homological complexes. Smashly graded modules and complexes are studied over nonassociative algebras with metagroup relations. Smashed tensor products of homological complexes are investigated. Their homotopisms and homologisms are scrutinized.


Sign in / Sign up

Export Citation Format

Share Document