scholarly journals A note on the zeroth products of Frenkel–Jing operators

2017 ◽  
Vol 16 (03) ◽  
pp. 1750053 ◽  
Author(s):  
Slaven Kožić

Let [Formula: see text] be an untwisted affine Kac–Moody Lie algebra. The top of every irreducible highest weight integrable [Formula: see text]-module is the finite-dimensional irreducible [Formula: see text]-module, where the action of the simple Lie algebra [Formula: see text] is given by zeroth products arising from the underlying vertex operator algebra theory. Motivated by this fact, we consider zeroth products of level [Formula: see text] Frenkel–Jing operators corresponding to Drinfeld realization of the quantum affine algebra [Formula: see text]. By applying these products, which originate from the quantum vertex algebra theory developed by Li, on the extension of Koyama vertex operator [Formula: see text], we obtain an infinite-dimensional vector space [Formula: see text]. Next, we introduce an associative algebra [Formula: see text], a certain quantum analogue of the universal enveloping algebra [Formula: see text], and construct some infinite-dimensional [Formula: see text]-modules [Formula: see text] corresponding to the finite-dimensional irreducible [Formula: see text]-modules [Formula: see text]. We show that the space [Formula: see text] carries a structure of an [Formula: see text]-module and, furthermore, we prove that the [Formula: see text]-module [Formula: see text] is isomorphic to the [Formula: see text]-module [Formula: see text].

2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Mirko Primc

AbstractWe construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.


1998 ◽  
Vol 41 (3) ◽  
pp. 611-623
Author(s):  
R. J. Marsh

Let U be the quantized enveloping algebra associated to a simple Lie algebra g by Drinfel'd and Jimbo. Let λ be a classical fundamental weight for g, and ⋯(λ) the irreducible, finite-dimensional type 1 highest weight U-module with highest weight λ. We show that the canonical basis for ⋯(λ) (see Kashiwara [6, §0] and Lusztig [18, 14.4.12]) and the standard monomial basis (see [11, §§2.4 and 2.5]) for ⋯(λ) coincide.


1968 ◽  
Vol 20 ◽  
pp. 344-361 ◽  
Author(s):  
I. Z. Bouwer

Let L be any simple finite-dimensional Lie algebra (defined over the field K of complex numbers). Cartan's theory of weights is used to define sets of (algebraic) representations of L that can be characterized in terms of left ideals of the universal enveloping algebra of L. These representations, called standard, generalize irreducible representations that possess a dominant weight. The newly obtained representations are all infinite-dimensional. Their study is initiated here by obtaining a partial solution to the problem of characterizing them by means of sequences of elements in K.


2009 ◽  
Vol 52 (1) ◽  
pp. 19-32 ◽  
Author(s):  
JOHAN KÅHRSTRÖM

AbstractLet be a finite dimensional complex semi-simple Lie algebra with Weyl group W and simple reflections S. For I ⊆ S let I be the corresponding semi-simple subalgebra of . Denote by WI the Weyl group of I and let w○ and wI○ be the longest elements of W and WI, respectively. In this paper we show that the answer to Kostant's problem, i.e. whether the universal enveloping algebra surjects onto the space of all ad-finite linear transformations of a given module, is the same for the simple highest weight I-module LI(x) of highest weight x ⋅ 0, x ∈ WI, as the answer for the simple highest weight -module L(xwI○w○) of highest weight xwI○w○ ⋅ 0. We also give a new description of the unique quasi-simple quotient of the Verma module Δ(e) with the same annihilator as L(y), y ∈ W.


2006 ◽  
Vol 17 (04) ◽  
pp. 441-476 ◽  
Author(s):  
HAISHENG LI

This is a sequel to [23]. In this paper, we focus on the construction of quantum vertex algebras over ℂ, whose notion was formulated in [23] with Etingof and Kazhdan's notion of quantum vertex operator algebra (over ℂ[[h]]) as one of the main motivations. As one of the main steps in constructing quantum vertex algebras, we prove that every countable-dimensional nonlocal (namely, noncommutative) vertex algebra over ℂ, which either is irreducible or has a basis of PBW type, is nondegenerate in the sense of Etingof and Kazhdan. Using this result, we establish the nondegeneracy of better known vertex operator algebras and some newly constructed nonlocal vertex algebras. We construct a family of quantum vertex algebras closely related to Zamolodchikov–Faddeev algebras.


2016 ◽  
Vol 18 (03) ◽  
pp. 1550040 ◽  
Author(s):  
Simon Lentner

For a finite-dimensional semisimple Lie algebra and a root of unity, Lusztig defined an infinite-dimensional quantum group of divided powers. Under certain restrictions on the order of the root of unity, he constructed a Frobenius homomorphism with finite-dimensional Hopf kernel and with the image of the universal enveloping algebra. In this article, we define and completely describe the Frobenius homomorphism for arbitrary roots of unity by systematically using the theory of Nichols algebras. In several new exceptional cases, the Frobenius–Lusztig kernel is associated to a different Lie algebra than the initial Lie algebra. Moreover, the Frobenius homomorphism often switches short and long roots and/or maps to a braided category.


2014 ◽  
Vol 21 (03) ◽  
pp. 361-380 ◽  
Author(s):  
Cuipo Jiang ◽  
Song Wang

We classify the irreducible restricted modules for the affine Nappi-Witten Lie algebra [Formula: see text] with some natural conditions. It turns out that the representation theory of [Formula: see text] is quite different from the theory of representations of Heisenberg algebras. We also study the extension of the vertex operator algebra [Formula: see text] by the even lattice L. We give the structure of the extension [Formula: see text] and its irreducible modules via irreducible representations of [Formula: see text] viewed as a vertex algebra.


2021 ◽  
pp. 1-41
Author(s):  
VOLODYMYR MAZORCHUK ◽  
RAFAEL MRÐEN

Abstract For a finite-dimensional Lie algebra $\mathfrak {L}$ over $\mathbb {C}$ with a fixed Levi decomposition $\mathfrak {L} = \mathfrak {g} \ltimes \mathfrak {r}$ , where $\mathfrak {g}$ is semisimple, we investigate $\mathfrak {L}$ -modules which decompose, as $\mathfrak {g}$ -modules, into a direct sum of simple finite-dimensional $\mathfrak {g}$ -modules with finite multiplicities. We call such modules $\mathfrak {g}$ -Harish-Chandra modules. We give a complete classification of simple $\mathfrak {g}$ -Harish-Chandra modules for the Takiff Lie algebra associated to $\mathfrak {g} = \mathfrak {sl}_2$ , and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright’s and Arkhipov’s completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff $\mathfrak {sl}_2$ and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules.


Author(s):  
MÁTYÁS DOMOKOS ◽  
VESSELIN DRENSKY

AbstractThe problem of finding generators of the subalgebra of invariants under the action of a group of automorphisms of a finite-dimensional Lie algebra on its universal enveloping algebra is reduced to finding homogeneous generators of the same group acting on the symmetric tensor algebra of the Lie algebra. This process is applied to prove a constructive Hilbert–Nagata Theorem (including degree bounds) for the algebra of invariants in a Lie nilpotent relatively free associative algebra endowed with an action induced by a representation of a reductive group.


Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

AbstractLet 𝔮 be a finite-dimensional Lie algebra. The symmetric algebra (𝔮) is equipped with the standard Lie–Poisson bracket. In this paper, we elaborate on a surprising observation that one naturally associates the second compatible Poisson bracket on (𝔮) to any finite order automorphism ϑ of 𝔮. We study related Poisson-commutative subalgebras (𝔮; ϑ) of 𝒮(𝔮) and associated Lie algebra contractions of 𝔮. To obtain substantial results, we have to assume that 𝔮 = 𝔤 is semisimple. Then we can use Vinberg’s theory of ϑ-groups and the machinery of Invariant Theory.If 𝔤 = 𝔥⊕⋯⊕𝔥 (sum of k copies), where 𝔥 is simple, and ϑ is the cyclic permutation, then we prove that the corresponding Poisson-commutative subalgebra (𝔮; ϑ) is polynomial and maximal. Furthermore, we quantise this (𝔤; ϑ) using a Gaudin subalgebra in the enveloping algebra 𝒰(𝔤).


Sign in / Sign up

Export Citation Format

Share Document