scholarly journals On n-dependent groups and fields II

2021 ◽  
Vol 9 ◽  
Author(s):  
Artem Chernikov ◽  
Nadja Hempel

Abstract We continue the study of n-dependent groups, fields and related structures, largely motivated by the conjecture that every n-dependent field is dependent. We provide evidence toward this conjecture by showing that every infinite n-dependent valued field of positive characteristic is henselian, obtaining a variant of Shelah’s Henselianity Conjecture in this case and generalizing a recent result of Johnson for dependent fields. Additionally, we prove a result on intersections of type-definable connected components over generic sets of parameters in n-dependent groups, generalizing Shelah’s absoluteness of $G^{00}$ in dependent theories and relative absoluteness of $G^{00}$ in $2$ -dependent theories. In an effort to clarify the scope of this conjecture, we provide new examples of strictly $2$ -dependent fields with additional structure, showing that Granger’s examples of non-degenerate bilinear forms over dependent fields are $2$ -dependent. Along the way, we obtain some purely model-theoretic results of independent interest: we show that n-dependence is witnessed by formulas with all but one variable singletons; provide a type-counting criterion for $2$ -dependence and use it to deduce $2$ -dependence for compositions of dependent relations with arbitrary binary functions (the Composition Lemma); and show that an expansion of a geometric theory T by a generic predicate is dependent if and only if it is n-dependent for some n, if and only if the algebraic closure in T is disintegrated. An appendix by Martin Bays provides an explicit isomorphism in the Kaplan-Scanlon-Wagner theorem.

Author(s):  
Franz-Viktor Kuhlmann

We prove that a valued field of positive characteristic [Formula: see text] that has only finitely many distinct Artin–Schreier extensions (which is a property of infinite NTP2 fields) is dense in its perfect hull. As a consequence, it is a deeply ramified field and has [Formula: see text]-divisible value group and perfect residue field. Further, we prove a partial analogue for valued fields of mixed characteristic and observe an open problem about 1-units in this setting. Finally, we fill a gap that occurred in a proof in an earlier paper in which we first introduced a classification of Artin–Schreier defect extensions.


2010 ◽  
Vol 06 (07) ◽  
pp. 1541-1564 ◽  
Author(s):  
QINGQUAN WU ◽  
RENATE SCHEIDLER

Let K be a function field over a perfect constant field of positive characteristic p, and L the compositum of n (degree p) Artin–Schreier extensions of K. Then much of the behavior of the degree pn extension L/K is determined by the behavior of the degree p intermediate extensions M/K. For example, we prove that a place of K totally ramifies/is inert/splits completely in L if and only if it totally ramifies/is inert/splits completely in every M. Examples are provided to show that all possible decompositions are in fact possible; in particular, a place can be inert in a non-cyclic Galois function field extension, which is impossible in the case of a number field. Moreover, we give an explicit closed form description of all the different exponents in L/K in terms of those in all the M/K. Results of a similar nature are given for the genus, the regulator, the ideal class number and the divisor class number. In addition, for the case n = 2, we provide an explicit description of the ramification group filtration of L/K.


Author(s):  
Merrick Cai ◽  
Daniil Kalinov

In this paper, we study the irreducible quotient [Formula: see text] of the polynomial representation of the rational Cherednik algebra [Formula: see text] of type [Formula: see text] over an algebraically closed field of positive characteristic [Formula: see text] where [Formula: see text]. In the [Formula: see text] case, for all [Formula: see text] we give a complete description of the polynomials in the maximal proper graded submodule [Formula: see text], the kernel of the contravariant form [Formula: see text], and subsequently find the Hilbert series of the irreducible quotient [Formula: see text]. In the [Formula: see text] case, we give a complete description of the polynomials in [Formula: see text] when the characteristic [Formula: see text] and [Formula: see text] is transcendental over [Formula: see text], and compute the Hilbert series of the irreducible quotient [Formula: see text]. In doing so, we prove a conjecture due to Etingof and Rains completely for [Formula: see text], and also for any [Formula: see text] and [Formula: see text]. Furthermore, for [Formula: see text], we prove a simple criterion to determine whether a given polynomial [Formula: see text] lies in [Formula: see text] for all [Formula: see text] with [Formula: see text] and [Formula: see text] fixed.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1032
Author(s):  
Raúl Durán Díaz ◽  
Víctor Gayoso Martínez ◽  
Luis Hernández Encinas ◽  
Jaime Muñoz Masqué

A method is presented that allows one to compute the maximum number of functionally-independent invariant functions under the action of a linear algebraic group as long as its Lie algebra admits a basis of square-zero matrices even on a field of positive characteristic. The class of such Lie algebras is studied in the framework of the classical Lie algebras of arbitrary characteristic. Some examples and applications are also given.


Author(s):  
Artem Lopatin

We consider the algebra of invariants of [Formula: see text]-tuples of [Formula: see text] matrices under the action of the orthogonal group by simultaneous conjugation over an infinite field of characteristic [Formula: see text] different from two. It is well known that this algebra is generated by the coefficients of the characteristic polynomial of all products of generic and transpose generic [Formula: see text] matrices. We establish that in case [Formula: see text] the maximal degree of indecomposable invariants tends to infinity as [Formula: see text] tends to infinity. In other words, there does not exist a constant [Formula: see text] such that it only depends on [Formula: see text] and the considered algebra of invariants is generated by elements of degree less than [Formula: see text] for any [Formula: see text]. This result is well-known in case of the action of the general linear group. On the other hand, for the rest of [Formula: see text] the given phenomenon does not hold. We investigate the same problem for the cases of symmetric and skew-symmetric matrices.


Author(s):  
Vigleik Angeltveit ◽  
Teena Gerhardt ◽  
Michael A. Hill ◽  
Ayelet Lindenstrauss

AbstractWe consider the algebraic K-theory of a truncated polynomial algebra in several commuting variables, . This naturally leads to a new generalization of the big Witt vectors. If k is a perfect field of positive characteristic we describe the K-theory computation in terms of a cube of these Witt vectors on ℕn. If the characteristic of k does not divide any of the ai we compute the K-groups explicitly. We also compute the K-groups modulo torsion for k = ℤ.To understand this K-theory spectrum we use the cyclotomic trace map to topological cyclic homology, and write as the iterated homotopy cofiber of an n-cube of spectra, each of which is easier to understand.


2011 ◽  
Vol 147 (2) ◽  
pp. 467-523 ◽  
Author(s):  
Kiran S. Kedlaya

AbstractWe complete our proof that given an overconvergent F-isocrystal on a variety over a field of positive characteristic, one can pull back along a suitable generically finite cover to obtain an isocrystal which extends, with logarithmic singularities and nilpotent residues, to some complete variety. We also establish an analogue for F-isocrystals overconvergent inside a partial compactification. By previous results, this reduces to solving a local problem in a neighborhood of a valuation of height 1 and residual transcendence degree zero. We do this by studying the variation of some numerical invariants attached to p-adic differential modules, analogous to the irregularity of a complex meromorphic connection. This allows for an induction on the transcendence defect of the valuation, i.e., the discrepancy between the dimension of the variety and the rational rank of the valuation.


Sign in / Sign up

Export Citation Format

Share Document