When is a fixed ring comparable to all overrings?

Author(s):  
Ahmed Ayache

An overring [Formula: see text] of an integral domain [Formula: see text] is said to be comparable if [Formula: see text], [Formula: see text], and each overring of [Formula: see text] is comparable to [Formula: see text] under inclusion. We do provide necessary and sufficient conditions for which [Formula: see text] has a comparable overring. Several consequences are derived, specially for minimal overrings, or in the case where the integral closure [Formula: see text] of [Formula: see text] is a comparable overring, or also when each chain of distinct overrings of [Formula: see text] is finite.

2016 ◽  
Vol 95 (1) ◽  
pp. 14-21 ◽  
Author(s):  
MABROUK BEN NASR ◽  
NABIL ZEIDI

Let $R\subset S$ be an extension of integral domains, with $R^{\ast }$ the integral closure of $R$ in $S$. We study the set of intermediate rings between $R$ and $S$. We establish several necessary and sufficient conditions for which every ring contained between $R$ and $S$ compares with $R^{\ast }$ under inclusion. This answers a key question that figured in the work of Gilmer and Heinzer [‘Intersections of quotient rings of an integral domain’, J. Math. Kyoto Univ.7 (1967), 133–150].


1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


2019 ◽  
Vol 73 (1) ◽  
pp. 1-8
Author(s):  
Lhoussain El Fadil

Abstract Let R be a principal ideal domain with quotient field K, and L = K(α), where α is a root of a monic irreducible polynomial F (x) ∈ R[x]. Let ℤL be the integral closure of R in L. In this paper, for every prime p of R, we give a new efficient version of Dedekind’s criterion in R, i.e., necessary and sufficient conditions on F (x) to have p not dividing the index [ℤL: R[α]], for every prime p of R. Some computational examples are given for R = ℤ.


2017 ◽  
Vol 5 (2) ◽  
pp. 117 ◽  
Author(s):  
Jayanta Ghosh ◽  
Dhananjoy Mandal ◽  
Tapas Samanta

Concept of soft equivalence relations (classes, mappings) are introduced using the notion of soft elements. Then we redefine the notion of soft group and soft ring in a new way by using the idea of soft elements and it is seen that our definitions of soft group and soft ring are equivalent to the existing notions of soft group [2] and soft ring [1]. The notion of soft coset is presented and validated by suitable examples. We investigate some important properties like soft divisor of zero, characteristic of a soft ring etc. by considering examples. Moreover, some necessary and sufficient conditions are established for a soft ring to be a soft integral domain and soft field.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Subramanian Visweswaran

PurposeThe purpose of this article is to determine necessary and sufficient conditions in order that (D, K) to be an S-accr pair, where D is an integral domain and K is a field which contains D as a subring and S is a multiplicatively closed subset of D.Design/methodology/approachThe methods used are from the topic multiplicative ideal theory from commutative ring theory.FindingsLet S be a strongly multiplicatively closed subset of an integral domain D such that the ring of fractions of D with respect to S is not a field. Then it is shown that (D, K) is an S-accr pair if and only if K is algebraic over D and the integral closure of the ring of fractions of D with respect to S in K is a one-dimensional Prüfer domain. Let D, S, K be as above. If each intermediate domain between D and K satisfies S-strong accr*, then it is shown that K is algebraic over D and the integral closure of the ring of fractions of D with respect to S is a Dedekind domain; the separable degree of K over F is finite and K has finite exponent over F, where F is the quotient field of D.Originality/valueMotivated by the work of some researchers on S-accr, the concept of S-strong accr* is introduced and we determine some necessary conditions in order that (D, K) to be an S-strong accr* pair. This study helps us to understand the behaviour of the rings between D and K.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Sign in / Sign up

Export Citation Format

Share Document