A NEW RING STENT WITH GRADED GEOMETRY FOR TREATING COARCTATION OF CURVED AORTA ARTERIES

Author(s):  
XIAOWEN YIN ◽  
XIAOMIN HU ◽  
TONG LI ◽  
JIAYAO MA

Ring stent implantation has been widely used to treat coarctation of the aorta (CoA) as an alternative to surgery. Currently adopted stents with uniform geometry may cause uneven stress distribution and high stress concentration in curved vessels, leading to in-stent restenosis (ISR). Inspired by functional graded material, here we propose a new ring-and-link stent, which has graded geometry in order to achieve a reduced peak stress when deployed in curved arteries. Numerical simulation of a single ring of the graded stent indicated that by varying the circumferential spacing of wave crest, the maximum stress exerted on the artery was reduced by as much as 27.86% in comparison with the uniform one. The effects of stent geometric parameters and artery curvature were also obtained through a parametric study. Finally, a whole stent was studied to verify the design, and a maximum stress reduction by 31.96% was achieved. In summary, the proposed graded ring stent shows great potential in clinical applications to reduce the risk of ISR.

Author(s):  
Yuqing Liu ◽  
Philip Diwakar ◽  
Dan Lin ◽  
Ismat Eljaouhari ◽  
Ajay Prakash

High acoustic energy has the potential to cause severe Acoustic Induced Vibration (AIV) that leads to fatigue failure at high stress concentration regions such as fittings in a piping system. Sweepolet fittings have been extensively used as mitigation to counteract the risk of fatigue failure caused by AIV. The advantages of a sweepolet are its integrally reinforced contoured body and low stress concentration. However, there are inconsistencies in published standards and regarding the design limits for sweepolet subjected to AIV. In this paper, Finite Element Analysis is conducted to simulate high frequency pipe shell wall vibration caused by acoustic energy inside the pipe. Peak stress and the associated minimum fatigue life are calculated for sweepolet and sockolet under the same acoustic excitation. By comparing the stress level to that of a sockolet whose design limit to AIV had been published, the design curve and fatigue life equation for sweepolet are developed.


2010 ◽  
Vol 25 (10) ◽  
pp. 1975-1982 ◽  
Author(s):  
M. Tane ◽  
R. Okamoto ◽  
H. Nakajima

The tensile deformation of anisotropic porous copper with unidirectionally oriented cylindrical pores was investigated by an acoustic emission method. In the loadings parallel and perpendicular to the orientation direction of the pores, many cracks are formed after yielding and they strongly affect the deformation. The formed cracks rapidly grow and connect with each other near the peak stress of the stress–strain curve, thereby leading to final fracture. Crack formation is easier under perpendicular loading than under parallel loading, because high stress concentration and stress triaxiality occurs around the pores. As a result, the strength and elongation for perpendicular loading are much smaller than those for parallel loading. Furthermore, in the case of perpendicular loading, the localized deformation around pores drastically decreases the plastic Poisson's ratio. These results indicate that a porous copper macroscopically behaves as a semibrittle material under perpendicular loading, while the porous copper exhibits ductility under parallel loading.


Author(s):  
Yucheng Yang ◽  
Qin Ma

Abstract Pedicle screws (PS) are frequently used in medical spinal column fixation. Despite 7 out of 100 pedicle screws fracture inside of the patients’ body and under the claim that lateral bending is the main failure mode, little research has addressed the stress characteristics and the fracture location of the PS under lateral bending. This study focuses on the effect of thread design on the magnitude and location of maximum stress concentration. Four types of thread shapes are considered including V-shape, square-shape, buttress, and reverse buttress. Three-dimensional (3D) finite element (FE) methods are used in this investigation. A load of 150 Newton is applied at the screw head to simulate lateral bending. The models are created in SolidWorks. The 3D FE analysis is performed using the standard coding of ANSYS Workbench 19.1. Based on this study, it is found that the high stress concentration is located at the cortical bone region rather than at the cancellous bone region. Although the general stress patterns are similar, the PS thread shape design and the thread fillet radius may significantly affect on the magnitude and location of maximum stress concentration.


2019 ◽  
Vol 24 (2) ◽  
pp. 295-307
Author(s):  
D. Kiran Prasad ◽  
K.V. Ramana ◽  
N. Mohan Rao

Abstract One of the most common incipient losses of integrity in mechanical structures is the development and propagation of cracks. Especially in rotating members like steam turbine rotors etc. cracks, because of their potential, cause catastrophic failures and are a grave threat to an uninterrupted operation and performance. A crack may propagate from some small imperfections on the surface of the body or inside of the material and it is most likely to appear in correspondence to high stress concentration. Crack propagation path is generally determined by the direction of maximum stress or by the minimum material strength. Hence determination of stresses induced has been the focus of attention for many researchers. In the present work, development of a mathematical model to determine the stresses induced in a rotating disc of varying thickness is studied. This model is applied to a steam turbine rotor disc to determine the induced stresses and radial deflection. The mathematical modeling results are validated with the results obtained using Ansys package. The results of the present study will be useful in diagnosing the location and magnitude of maximum stress induced in the turbine rotor disc and stress intensity factor due to the presence of crack.


Author(s):  
Dan Lin ◽  
Ajay Prakash ◽  
Philip Diwakar ◽  
Bertito David

High acoustic energy is known to cause vibrations in pipes, and in some severe cases acoustic induced vibration can lead to fatigue failure at branch connections with high stress concentration. Industry guidelines suggest using mitigation measures such as fabricated full wrap-around reinforcement pad (re-pad) or Sweepolet fittings at branch connections. Effectiveness of these mitigation measures is evaluated via a finite element analysis of four types of branch connections; (i) Sockolet, (ii) Sockolet with 2″ wide partial re-pad, (iii) Sockolet with full wrap-around re-pad, and (iv) Sweepolet. Four distinct acoustic frequency ranges (1/3 octave bands) with associated sound pressure levels are used as the excitation source. Maximum stress levels in the main header pipe at the branch tie-in are monitored to assess the potential for vibration damage. Of the four branch connections, Sockolet with full wrap-around re-pad is found to be least susceptible to damage, followed by the Sweepolet. Unreinforced Sockolet is most susceptible to damage, and the Sockolet with partial re-pad is only marginally better.


Author(s):  
Mauro G. Marinho ◽  
Alexandre M. Pope ◽  
Luiz Claudio Meniconi ◽  
Luiz Henrique M. Alves ◽  
Cesar Del Vecchio

Following the warning of a flooded bow horizontal brace of a semi-submersible production platform, an inspection diving team was mobilized and cracks were found at both bow and aft K-joints. Analysis of the service life of the platform, together with the results of structural analysis and local strain measurements, concluded that cracking was caused by fatigue initiated at high stress concentration points on the gusset plates inserted in the tubular joints. As a consequence of the fractured plates other cracks were nucleated close to the intersection lines of the braces that compose the K-joints. Based on this analysis different repair possibilities were proposed. To comply with the production goals of the Business Unit it was decided to repair the platform on-site and in production in agreement with the Classification Society. The proposed repair contemplated the installation of two flanges on the gusset plates between the diagonal braces by underwater wet (UWW) welding. Cracks at the gusset plates were also removed by grinding and wet welding. Defects located at the braces are being monitored and repaired by the installation of backing bars, by wet welding, followed by grinding and welding from the inside. To carry out the job two weld procedures and ten welder-divers were qualified.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4711
Author(s):  
Armanto P. Simanjuntak ◽  
Jae-Young Lee

Printed circuit heat exchangers (PCHEs) are often subject to high pressure and temperature difference between the hot and cold channels which may cause a mechanical integrity problem. A conventional plate heat exchanger where the channel geometries are semi-circular and etched at one side of the stacked plate is a common design in the market. However, the sharp edge tip channel may cause high stress intensity. Double-faced type PCHE appears with the promising ability to reduce the stress intensity and stress concentration factor. Finite element analysis simulation has been conducted to observe the mechanical integrity of double-etched printed circuit heat exchanger design. The application of an additional ellipse upper channel helps the stress intensity decrease in the proposed PCHE channel. Five different cases were simulated in this study. The simulation shows that the stress intensity was reduced up to 24% with the increase in additional elliptical channel radius. Besides that, the horizontal offset channels configuration was also investigated in this study. Simulation results show that the maximum stress intensity of 2.5 mm offset configuration is 9% lower compared to the maximum stress intensity of 0 mm offset. This work proposed an additional elliptical upper channel with a 2.5 mm offset configuration as an optimum design.


1990 ◽  
Vol 196 ◽  
Author(s):  
Jiang Xinggang ◽  
Cui Jianzhong ◽  
Ma Longxiang

ABSTRACTCavity nucleation during superplastic deformation of a high strength aluminium alloy has been studied using a high voltage electron microscope and an optical microscope. The results show that cavities nucleation is due only to superplastic deformation and not to pre-existing microvoids which may be introduced during thermomechanical processing. The main reason for cavity nucleation is the high stress concentration at discontinuties in the plane of the grain boundary due to grain boundary sliding.


2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


Author(s):  
Tibor Kiss ◽  
Wing-Fai Ng ◽  
Larry D. Mitchell

Abstract A high-speed rotor wheel for a wind-tunnel experiment has been designed. The rotor wheel was similar to one in an axial turbine, except that slender bars replaced the blades. The main parameters of the rotor wheel were an outer diameter of 10“, a maximum rotational speed of 24,000 RPM and a maximum transferred torque of 64 lb-ft. Due to the working environment, the rotor had to be designed with high safety margins. The coupling of the rotor wheel with the shaft was found to be the most critical issue, because of the high stress concentration factors associated with the conventional coupling methods. The efforts to reduce the stress concentrations resulted in an advanced coupling design which is the main subject of the present paper. This new design was a special key coupling in which six dowel pins were used for keys. The key slots, now pin-grooves, were placed in bosses on the inner surface of the hub. The hub of the rotor wheel was relatively long, which allowed for applying the coupling near the end faces of the hub, that is, away from the highly loaded centerplane. The long hub resulted in low radial expansion in the coupling region. Therefore, solid contact between the shaft and the hub could be maintained for all working conditions. To develop and verify the design ideas, stress and deformation analyses were carried out using quasi-two-dimensional finite element models. An overall safety factor of 3.7 resulted. The rotor has been built and successfully accelerated over the design speed in a spin test pit.


Sign in / Sign up

Export Citation Format

Share Document