An Experimental Study of Cavity Nucleation During Superplastic Deformation

1990 ◽  
Vol 196 ◽  
Author(s):  
Jiang Xinggang ◽  
Cui Jianzhong ◽  
Ma Longxiang

ABSTRACTCavity nucleation during superplastic deformation of a high strength aluminium alloy has been studied using a high voltage electron microscope and an optical microscope. The results show that cavities nucleation is due only to superplastic deformation and not to pre-existing microvoids which may be introduced during thermomechanical processing. The main reason for cavity nucleation is the high stress concentration at discontinuties in the plane of the grain boundary due to grain boundary sliding.

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1065 ◽  
Author(s):  
Sheng Li ◽  
Shunyao Jin ◽  
Zhongguo Huang

The study of the exact physical mechanism of cavity nucleation and growth is significant in terms of predicting the extent of internal damage following superplastic deformation. The 5A70 alloy was processed by cold rolling for 14 passes with a total reduction deformation of 90% (20–2 mm) and the heat treatment was inserted at a thickness of 10 and 5 mm at 340 °C for 30 min. The superplastic tensile tests were performed at 400, 450, 500, 550 °C and the initial strain rate was 1 10−3 s−1. Cavities were observed at the head of the particle and the interface of the grain boundaries. It is suggested that the cavity was nucleated during the sliding/climbing of the dislocations, due to the precipitate pinning effect and the impeding grain boundary during grain boundary sliding (GBS). In this study, the results demonstrated a clear transition from diffusion growth to superplastic diffusion growth and plastic-controlled growth at a cavity radius larger than 1.52 and 13.90 μm. The cavity nucleation, growth, interlinkage and coalescence under the applied stress during the superplastic deformation, as well as the crack formation and expansion during the deformation, ultimately led to the superplastic fracture.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3667 ◽  
Author(s):  
Shaomin Lv ◽  
Chonglin Jia ◽  
Xinbo He ◽  
Zhipeng Wan ◽  
Xinxu Li ◽  
...  

The superplastic deformation of a hot-extruded GH4151 billet was investigated by means of tensile tests with the strain rates of 10−4 s−1, 5 × 10−4 s−1 and 10−3 s−1 and at temperatures at 1060 °C, 1080 °C and 1100 °C. The superplastic deformation of the GH4151 alloy was reported here for the first time. The results reveal that the uniform fine-grained GH4151 alloy exhibited an excellent superplasticity and high strain rate sensitivity (exceeded 0.5) under all experimental conditions. It was found that the increase of strain rate resulted in an increased average activation energy for superplastic deformation. A maximum elongation of 760.4% was determined at a temperature of 1080 °C and strain rate of 10−3 s−1. The average activation energy under different conditions suggested that the superplastic deformation with 1 × 10−4 s−1 in this experiment is mainly deemed as the grain boundary sliding controlled by grain boundary diffusion. However, with a higher stain rate of 5 × 10−4 s−1 and 1 × 10−3 s−1, the superplastic deformation is considered to be grain boundary sliding controlled by lattice diffusion. Based on the systematically microstructural examination using optical microscope (OM), SEM, electron backscatter diffraction (EBSD) and TEM techniques, the failure and dynamic recrystallization (DRX) nucleation mechanisms were proposed. The dominant nucleation mechanism of dynamic recrystallization (DRX) is the bulging of original grain boundaries, which is the typical feature of discontinuous dynamic recrystallization (DDRX), and continuous dynamic recrystallization (CDRX) is merely an assistant mechanism of DRX. The main contributions of DRX on superplasticity elongation were derived from its grain refinement process.


1978 ◽  
Vol 13 (11) ◽  
pp. 2380-2384 ◽  
Author(s):  
T. Chandra ◽  
J. J. Jonas ◽  
D. M. R. Taplin

2009 ◽  
Vol 1242 ◽  
Author(s):  
Ramos A. Mitsuo ◽  
Martínez F. Elizabeth ◽  
Negrete S. Jesús ◽  
Torres-Villaseñor G.

ABSTRACTZinalco alloy (Zn-21mass%Al-2mass%Cu) specimens were deformed superplastically with a strain rate (ε) of 1×10-3 s-1 at homologous temperature (TH) of 0.68 (5 ). It was observed neck formation that indicate nonhomegeneus deformation. Grain size and grain boundaries misorientation changes, due superplastic deformation, were characterized by Orientation Imagining Microscopy (OIM) technique. It was studied three regions in deformed specimens and the results were compared with the results for a specimen without deformation. Average grain size of 1 mm was observed in non-deformed specimen and a fraction of 82% for grain boundary misorientation angles with a grain boundaries angles between 15° and 55° was found. For deformed specimen, the fraction of angles between 15° and 55° was decreced to average value of 75% and fractions of low angle (<5°) and high angle (>55°) misorientations were 10% and 15% respectively. The grain size and high fraction of grain boundary misorientation angles between 15° and 55° observed in the alloy without deformation, are favorable for grain rotation and grain boundary sliding (GBS) procces. The changes observed in the fraction of favorable grain boundary angles during superplastic deformation, shown that the superplastic capacity of Zinalco was reduced with the deformation.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001465-001485
Author(s):  
Brian Schmaltz ◽  
Yukinari Abe ◽  
Kazuyuki Kohara

As technology nodes progress to 32/28nm and beyond underfill materials are presented with the significantly challenging task of maintaining bump protection while ensuring ultra low-K dielectric (ULK/ELK) integrity. This challenge is further complicated by the trend toward RoHS compliancy(lead-free) and a ever increasing die size. Through extensive research and testing, several specifically formulated underfill materials were determined acceptable solutions for these complex issues. As technology nodes progress to smaller process generations a high stress concentration is seen at the dielectric layer during thermal cycling. This stress is a typical result of a high glass transition temperature (Tg) / high strength material that often leads to a cracking failure mode of the thin dielectric layer. Too low of a Tg presents a high stress concentration on the bumps which once again constitutes failure, this time however the crack is typically seen at the bump location. This high stress concentration seen at the bumps is more significant when lead free bumps are considered due to their inherent fragile nature. Underfill materials must now be specifically formulated and optimized to solve these failure modes for a large variable of package types. This paper will discuss solutions to typical failure modes currently seen with reliability testing of present and future technologies.


2003 ◽  
Vol 125 (3) ◽  
pp. 253-259 ◽  
Author(s):  
K. M. Rajan ◽  
K. Narasimhan

High strength thin walled flow formed tubes are manufactured from AISI 4130 medium carbon low alloy steel. Starting with an ultimate tensile strength of 650 MPa, the material has recorded a tensile strength of 1250–1300 MPa corresponding to a percentage thickness reduction of 88. It has been observed that material with higher impurity levels and inclusion ratings are more vulnerable to development of micro cracks at higher percentage thickness reduction. Deformed inclusions like MnS act as stress raisers leading to initiation of micro cracks. Hard to deform inclusions like silicates create high stress concentration at inclusion-matrix interface, leading to de-cohesion and finally cracking. The presence of dissolved gas contents, particularly hydrogen, are harmful in flow forming. Hydrogen embrittlement is a serious problem which is likely to lead to cracking of the flow formed tube. It could be concluded from this study that clean steel (electro slag refined) processed through hardening and tempering route with a maximum percentage reduction in thickness of 88 or less can give consistently very high strength of the order of 1250–1300 MPa for AISI 4130 steel.


2007 ◽  
Vol 551-552 ◽  
pp. 199-202 ◽  
Author(s):  
Zhan Ling Zhang ◽  
Yong Ning Liu ◽  
Jie Wu Zhu ◽  
G. Yu

Ultrahigh carbon steel containing 1.6 wt pct C was processed to create microduplex structure consisting of fine-spheroidized carbides and fine ferrite grains. Elongation-to-failure tests were conducted at strain rates from 10-4s-1 to 15×10-4s-1, and at temperatures from 600 °C to 850 °C. The steel exhibited superplasticity at and above 700 °C when testing at a strain rate of 10-4s-1, and at 800 °C when testing at strain rates of 7×10-4s-1 and slower. The grains retained the equiaxed shape and initial size during deformation; dynamic grain growth was not observed after superplastic deformation, whereas carbide coarsening was observed. It is concluded that the fine ferrite grains or austensite grains are stabilized by the grain boundary carbides, and grain-boundary sliding controlled by grain boundary diffusion is the principal superplastic deformation mechanism at temperatures in the range of 700-850 °C.


2016 ◽  
Vol 838-839 ◽  
pp. 59-65 ◽  
Author(s):  
Hiroyuki Watanabe ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

Texture change during superplastic deformation was examined and compared in two magnesium alloys with different chemical composition. These alloys were extruded to refine the microstructure. The pre-existing basal texture of both alloys became slightly more random within the bulk probably owing to grain boundary sliding and the accompanying grain rotation. However, the texture changes differed between tensile and compressive deformation along the extrusion (longitudinal) direction. This fact suggests that dislocation slip is important in superplastic deformation. It was concluded that dislocation slip acts primarily as an accommodation mechanism for grain boundary sliding.


Sign in / Sign up

Export Citation Format

Share Document