Laser-Induced Plasma Atomic and Ionic Emission During Target Ablation

Author(s):  
Nisreen Kh. Abdalameer ◽  
Sabah N. Mazhir

This paper investigates the spectroscopy of plasma that resulted from the bombardment of ZnSe by using the optical emission spectroscopic (OES) technique. The plasma can be generated by the reaction between an Nd:YAG laser, with a wavelength of 1064[Formula: see text]nm with a repeat rate of 6[Formula: see text]Hz (as well as 9[Formula: see text]ns pulse duration), and a solid target, where the density of the electron (ne), the temperature of the electron ([Formula: see text]), the frequency of the plasma ([Formula: see text]) and the Debye length ([Formula: see text]) as plasma parameters, in addition to the particles’ number of Debye ([Formula: see text]) and plasma parameter ([Formula: see text]) have been calculated by picking up the spectrum of plasma at different energies (100, 200, 300, 400, 500) mj using Selenium (Se), Zinc (Zn) and the mixture (ZnSe) at ([Formula: see text]). It is found that the electron temperatures of Zn and Se ranged between (0.257–0.267)[Formula: see text]eV and (1.036–1.055) eV, respectively, while that of ZnSe ranged between (1.15–1.28)[Formula: see text]eV. This indicates that the electron temperature of ZnSe is higher than the temperatures of each Zn and Se.

2021 ◽  
Vol 2114 (1) ◽  
pp. 012030
Author(s):  
H Adil A Alazawi ◽  
Q Adnan Abass

Abstract Plasma graphite creation by a pulsed Nd: YAG laser with a wavelength of 1064nm to a target in vacuum in two cases (Argon, Air) with varied gas pressures and the resulting spectrum was diagnosed using optical emission spectroscopy for the wavelength range 320-740nm electron temperature Te and electron density ne Debye lengthλD , and plasma frequency f p were calculated. The results showed that increasing the pulse laser energy causes all plasma parameters of both gases under study to increase, as well as a rise in the emission line intensity. The ionization energy of target atoms determines the presence of an element’s atomic and ionic emission lines in the emission spectrum, increase in pressure decreases the electron temperature, and Debye length, also plasma frequency and electron density increase, as it has been proven that the type of gas does not affect the properties of plasma.


2021 ◽  
pp. 2948-2955
Author(s):  
Maryam M. Shehab ◽  
Kadhim A. Aadim

      In this paper, the optical emission spectrum (OES) technique was used to analyze the spectrum resulting from the (CdO:CoO)  plasma in air, produced by Nd:YAG laser with λ=1064 nm, τ=10 ns, a focal length of 10 cm, and a range of energy of 200-500 mJ. We identified laser-induced plasma parameters such as electron temperature (Te) using Boltzmann plot method, density of electron (ne), length of Debye (λD), frequency of plasma (fp), and number of Debye (ND), using two-Line-Ratio method. At a mixing ratio of X= 0.5, the (CdO:CoO) plasma spectrum was recorded for different energies. The results of plasma parameters caused by laser showed that, with the increase in laser energy, the values of Te, ne and fp were increased, while the value of λD was decreased. The calculated electron temperature value was in the range of 0.449-0.619 eV at ratio X=0.5


2021 ◽  
Vol 2114 (1) ◽  
pp. 012049
Author(s):  
Uday H. Tawfeeq ◽  
Ahmed K. Abbas ◽  
Kadhim A. Aadim

Abstract In this work, optical emission spectroscopy (OES) was used to estimate the parameters of plasma electron temperature (Te), electron density (ne), plasma frequency (fp), Debye length (λD), and Debye number (ND). Understanding how an energy pulsed laser affects these variables is also important. Irradiation of pure cadmium using an Nd: YAG laser pulse with a wavelength(1064)nm and energy ranging from (200-600)millijoules, of frequency (6) Hz. The spectrum of laser-induced plasma was detected under atmospheric pressure. It was discovered that when the energy of the laser pulse rises, the intensity of the CdI and CdII lines increases.


2021 ◽  
pp. 3560-3569
Author(s):  
Ala F. Ahmed ◽  
Ali A. Yousef

      This study shows the effects of copper material electrode, applied voltage, and different pressure values on electrical discharge plasma. The purpose of the work is the application of the spectral analysis method to obtain accurate results of nitrogen plasma parameters. By using the optical emission spectroscopy (OES), many N2 molecular spectra peaks appeared in the range from 300 to 480 nm. Also, some additional peaks were recorded, corresponding to atomic and ionic lines for nitrogen, target material, and hydrogen, in all samples. The electron density (ne) was calculated from the measurement of Stark broadening effect, which was found to decrease with increasing pressure from 0.1 mbar to 0.8 mbar. The higher emission intensities occurred at 0.2 mbar working pressure and were reduced with higher pressure. The vibrational temperature (Tvib) for N2 increased from 0.17 to 0.33 eV with increasing the pressure from 0.15 mbar to 0.2 mbar, then decreased to 0.25 eV with increasing the pressure to 0.8 mbar. Other plasma parameters were studied, which are electron temperature (Te), plasma frequency of electron ( ), and Debye length (λD).


2020 ◽  
pp. 1665-1671
Author(s):  
Madyan A. Khalaf ◽  
Baida M. Ahmed ◽  
Kadhim A. Aadim

In this work, the optical emission spectrum technique was used to analyze the spectrum resulting from the CdO:Sn plasma produced by laser Nd:YAG with a wavelength of (1064) nm, duration of (9) ns, and a focal length of (10) cm in the range of energy of 500-800 mJ. The electron temperature (Te) was calculated using the in ratio line intensities method, while the electron density (ne) was calculated using Saha-Boltzmann equation. Also, other plasma parameters were calculated, such as plasma (fp), Debye length (λD) and Debye number (ND). At mixing ratios of X=0.1, 0.3 and 0.5, the CdO1-X :SnX plasma spectrum was recorded for different energies. The changes in electron temperature and the densities were studied as a function of the laser energies. Outcome measure value of the electron temperature at the ratio of  X = 0.1 was (1.079-1.054) eV, while at  X=0.3 the Te range was (0.952- 0.921) eV and at X=0.5 it was (0.928-0.906) eV.


2019 ◽  
Vol 24 (2) ◽  
pp. 63
Author(s):  
Anas A. Abdullah1 ◽  
Sabre J. Mohammed1 ◽  
Ghuson H. Mohammed2

The optical emission spectrum of produced plasma was studied using pulse laser, where the effect of laser energy at a wavelength of 1064nm  was studied on lead oxide that produced by optical emission spectroscopy at different laser energy from 500 to 900 mJ. It was found that the intensity for Pb I and Pb II lines increase with increasing laser energy, but with different ratio, as a result increasing the excitation rate with increasing the number of falling photons. The wave length was recorded at highest laser Energy produced from Pb II which was equal to 666.02 nm. It can be seen that The height of peaks increase with increasing laser energy due to the effect of increasing the Electrical field induced by increasing Electrons density and the temperature of electron (Te) and electron density (ne) increase from 1.222×1018 cm-3 to 1.444×1018 cm-3 with increasing laser energy from  500 to 900 mJ respectively as a result of increasing number of falling photons which lead to increase in the electron density.   http://dx.doi.org/10.25130/tjps.24.2019.033   


2018 ◽  
Vol 15 (2) ◽  
pp. 205-210
Author(s):  
Baghdad Science Journal

In this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles


2018 ◽  
Vol 16 (38) ◽  
pp. 1-9
Author(s):  
Kadhim A Aadim

In this work, plasma parameters such as, the electron temperature )Te(, electron density ne, plasma frequency )fp(, Debye length )λD(and Debye number )ND), have been studied using optical emission spectroscopy technique. The spectrum of plasma with different values of energy, Pb doped CuO at different percentage (X=0.6, 0.7, 0.8) were recorded. The spectroscopic study for these mixing under vacuum with pressure down to P=2.5×10-2 mbar. The results of electron temperature for X=0.6 range (1.072-1.166) eV, for X=0.7 the Te range (1.024-0.855) eV and X=0.8 the Te is (1.033-0.921) eV. Optical properties of CuO:Pb thin films were determined through the optical transmission method using ultraviolet visible spectrophotometer within the range (190 – 1100) nm.


2021 ◽  
Author(s):  
Kadhim A. Aadim ◽  
Madyan A. Khalafand ◽  
Wassan D. Hussain

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1595
Author(s):  
Nomin Lim ◽  
Yeon Sik Choi ◽  
Alexander Efremov ◽  
Kwang-Ho Kwon

This research work deals with the comparative study of C6F12O + Ar and CF4 + Ar gas chemistries in respect to Si and SiO2 reactive-ion etching processes in a low power regime. Despite uncertain applicability of C6F12O as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO2; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters. It was found that both gas systems exhibit (a) similar changes in ion energy flux and F atom flux with variations on input RF power and gas pressure; (b) quite close polymerization abilities; and (c) identical behaviors of Si and SiO2 etching rates, as determined by the neutral-flux-limited regime of ion-assisted chemical reaction. Principal features of C6F12O + Ar plasma are only lower absolute etching rates (mainly due to the lower density and flux of F atoms) as well as some limitations in SiO2/Si etching selectivity.


Sign in / Sign up

Export Citation Format

Share Document