Formal Knowledge Engineering Methods for Knowledge Discovery

2002 ◽  
Vol 01 (02) ◽  
pp. 141-154
Author(s):  
Satheesh Ramachandran

This paper presents a framework for the integrated use of formal knowledge engineering methods and data mining based knowledge discovery methods. Knowledge is a key enterprise asset, and organizations are adopting both knowledge engineering and knowledge discovery paradigms for better knowledge management and enhanced decision support capability. Although there exists a useful interdependence between these endeavors, not much effort has been focused on using the full potential of one for the other. This paper presents a framework for the integrated use of established formal knowledge engineering methods and knowledge discovery processes with the ultimate intent of better managing the enterprise knowledge life cycle. It provides a brief overview of the knowledge discovery processes, and introduces a class of formal knowledge engineering methods and the perceived role of these methods in supporting the integration between the two worlds of knowledge discovery and knowledge engineering.

Author(s):  
Iman Barazandeh ◽  
Mohammad Reza Gholamian

The healthcare industry is one of the most attractive domains to realize the actionable knowledge discovery objectives. This chapter studies recent researches on knowledge discovery and data mining applications in the healthcare industry and proposes a new classification of these applications. Studies show that knowledge discovery and data mining applications in the healthcare industry can be classified to three major classes, namely patient view, market view, and system view. Patient view includes papers that performed pure data mining on healthcare industry data. Market view includes papers that saw the patients as customers. System view includes papers that developed a decision support system. The goal of this classification is identifying research opportunities and gaps for researchers interested in this context.


Author(s):  
Kijpokin Kasemsap

This chapter introduces the role of Data Mining (DM) for Business Intelligence (BI) in Knowledge Management (KM), thus explaining the concept of KM, BI, and DM; the relationships among KM, BI, and DM; the practical applications of KM, BI, and DM; and the emerging trends toward practical results in KM, BI, and DM. In order to solve existing BI problems, this chapter also describes practical applications of KM, BI, and DM (in the fields of marketing, business, manufacturing, and human resources) and the emerging trends in KM, BI, and DM (in terms of larger databases, high dimensionality, over-fitting, evaluation of statistical significance, change of data and knowledge, missing data, relationships among DM fields, understandability of patterns, integration of other DM systems, and users' knowledge and interaction). Applying DM for BI in the KM environments will enhance organizational performance and achieve business goals in the digital age.


Author(s):  
Doina Stratu-Strelet ◽  
Anna Karina López-Hernández ◽  
Vicente Guerola-Navarro ◽  
Hermenegildo Gil-Gómez ◽  
Raul Oltra-Badenes

This chapter highlights the role of technology-based universities in public-private partnerships (PPP) to strengthen and deploy the digital single market strategy. Moreover, it analyzes how these collaboration channels have link knowledge management as a tool for sustainable collaboration. Given the need to establish collaboration channels with the private sector, according to Lee, it is critical to establish the impact of sharing sophisticated knowledge and partnering at the same time. This chapter wants to highlights two relevant aspects of PPP: on the one hand, the importance of integrating the participation of a technology-based university with three objectives: (1) the coordination, (2) the funding management, and (3) the dissemination of results; and the other hand, the participation private sector that is represented by agile agents capable to execute high-value actions for society. With the recognition of these values, the investment and interest of the projects under way are justified by public-private partnership.


Author(s):  
Nilmini Wickramasinghe

The information age has made information communication technology (ICT) a necessity for conducting business. This in turn has led to the exponential increase in the electronic capture of data and its storage in vast data warehouses. In order to respond quickly to fast changing markets, organizations must maximize these raw data and information resources. Specifically, they need to transform them into germane knowledge to aid superior decision-making (Wickramasinghe & von Lubitz, 2006). To do this effectively not only involves the analysis of the data and information but also requires the use of sophisticated tools to enable such analyses to occur. Knowledge discovery technologies represent a spectrum of new technologies that facilitate the analysis of data to find relationships from the data to finding reasons behind observable patterns (i.e., transform the data into relevant information and germane knowledge). Such new discoveries can have a profound impact on decision making in general and the designing of business strategies. With the massive increase in data being collected and the demands of a new breed of intelligent applications like customer relationship management, demand planning, and predictive forecasting, these knowledge discovery technologies are becoming competitive necessities for providing a high performance and feature rich intelligent application servers for intelligent enterprises. Knowledge management (KM) tools and technologies are the systems that integrate various legacy systems, databases, ERP systems, and data warehouse to help facilitate an organization’s knowledge discovery process. Integrating all of these with advanced decision support and online real time events enables an organization to understand customers better and devise business strategies accordingly. Creating a competitive edge is the goal of all organizations employing knowledge discovery for decision support (Thorne & Smith, 2000). The following provides a synopsis of the major tools and critical considerations required to enable an organization to successfully effect appropriate knowledge sharing, knowledge distribution, knowledge creation, as well as knowledge capture and codification processes and hence embrace effective knowledge management (KM) techniques and advanced knowledge discovery.


Sign in / Sign up

Export Citation Format

Share Document