scholarly journals Evaporation of black hole under the effect of quantum gravity

Author(s):  
Riasat Ali ◽  
Rimsha Babar ◽  
Muhammad Asgher ◽  
Syed Asif Ali Shah

This paper provides an extension for Hawking temperature of Reissner–Nordström-de Sitter (RN-DS) black hole (BH) with global monopole as well as [Formula: see text]D charged black hole. We consider the black holes metric and investigate the effects of quantum gravity ([Formula: see text]) on Hawking radiation. We investigate the charged boson particles tunneling through the horizon of black holes by using the Hamilton–Jacobi ansatz phenomenon. In our investigation, we study the quantum radiation to analyze the Lagrangian wave equation with generalized uncertainty principle and calculate the modified Hawking temperatures for black holes. Furthermore, we analyze the charge and correction parameter effects on the modified Hawking temperature and examine the stable and unstable condition of RN-DS BH with global monopole as well as [Formula: see text]D charged black hole.

2017 ◽  
Vol 26 (05) ◽  
pp. 1741018 ◽  
Author(s):  
Muhammad Rizwan ◽  
K. Saifullah

When quantum gravity effects, that are based on generalized uncertainty principle with a minimal measurable length, are incorporated into black hole physics the Klein–Gordon and Dirac equations get modified. Using these modified equations we investigate tunneling of scalar particles and fermions from event and acceleration horizons of accelerating and rotating black holes and obtain the modified Hawking temperature with quantum gravity effects. We see that Hawking temperature depends on black hole parameters as well as the quantum numbers of emitted fermions. The quantum corrections slow down black hole evaporation and leave a black hole remnant. This contradicts complete evaporation of a black hole which is presaged by the standard temperature formula for black holes. The modified Hawking temperatures presented here, in appropriate limits, are consistent with the previous results in the literature.


Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950102
Author(s):  
Muhammad Rizwan ◽  
Khalil Ur Rehman

By considering the quantum gravity effects based on generalized uncertainty principle, we give a correction to Hawking radiation of charged fermions from accelerating and rotating black holes. Using Hamilton–Jacobi approach, we calculate the corrected tunneling probability and the Hawking temperature. The quantum corrected Hawking temperature depends on the black hole parameters as well as quantum number of emitted particles. It is also seen that a remnant is formed during the black hole evaporation. In addition, the corrected temperature is independent of an angle [Formula: see text] which contradicts the claim made in the literature.


2014 ◽  
Vol 29 (26) ◽  
pp. 1450123 ◽  
Author(s):  
Zhongwen Feng ◽  
Li Zhang ◽  
Xiaotao Zu

According to the effects of quantum gravity, we investigated the fermion tunneling from the Reissner–Nordström–de Sitter quintessence (RN–dSQ) black hole. The corrected temperature is not only determined by the mass and charge of the black hole, but also depended on the quantum number of the emitted fermion and β, which is a small value representing the effects of quantum gravity. The effects of quantum gravity slowed down the increase of the temperature and led to the remnants of the black hole. We think it is a method to avoid the information loss paradox of black holes.


2021 ◽  
Vol 36 (26) ◽  
pp. 2150191
Author(s):  
Gao-Ming Deng ◽  
Jinbo Fan ◽  
Xinfei Li

As an intriguing topological defect, global monopole’s influence on behaviors of black holes has always been anticipated but still remains obscure. Analyzing the thermodynamics of charged Anti-de Sitter (AdS) black hole incorporating a global monopole manifests that the black hole undergoes a Van der Waals-like first-order phase transition near the critical point. This paper concentrates on further investigating the transition, aiming at clarifying how the global monopole affects the criticality and microstructure of the charged AdS black holes. As a highlight, this research is implemented by employing new state parameters other than (T, P, V) description and contributes to deeper understanding the rich critical phenomena and phase structure of black holes.


2015 ◽  
Vol 30 (12) ◽  
pp. 1550059 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Abdel Magied Diab

The generalized uncertainty principles (GUP) and modified dispersion relations (MDR) are much like two faces for one coin in research for the phenomenology of quantum gravity which apparently plays an important role in estimating the possible modifications of the black hole thermodynamics and the Friedmann equations. We first reproduce the horizon area for different types of black holes and investigate the quantum corrections to Bekenstein–Hawking entropy (entropy-area law). Based on this, we study further thermodynamical quantities and accordingly the modified Friedmann equation in four-dimensional de Sitter–Schwarzschild, Reissner–Nördstrom and Garfinkle–Horowitz–Strominger black holes. In doing this, we applied various quantum gravity approaches. The MDR parameter relative to the GUP one is computed and the properties of the black holes are predicted. This should play an important role in estimating response of quantum gravity to the various metric-types of black holes. We found a considerable change in the thermodynamics quantities. We find that the modified entropy of de Sitter–Schwarzshild and Reissner–Nördstrom black holes starts to exist at a finite standard entropy. The Garfinkle–Horowitz–Strominger black hole shows a different entropic property. The modified specific heat due to GUP and MDR approaches vanishes at large standard specific heat, while the corrections due to GUP result in different behaviors. The specific heat of modified de Sitter–Schwarzshild and Reissner–Nördstrom black holes seems to increase, especially at large standard specific heat. In the early case, the black hole cannot exchange heat with the surrounding space. Accordingly, we would predict black hole remnants which may be considered as candidates for dark matter.


2018 ◽  
Vol 27 (14) ◽  
pp. 1847028 ◽  
Author(s):  
Ana Alonso-Serrano ◽  
Mariusz P. Da̧browski ◽  
Hussain Gohar

The existence of a minimal length, predicted by different theories of quantum gravity, can be phenomenologically described in terms of a generalized uncertainty principle. We consider the impact of this quantum gravity motivated effect onto the information budget of a black hole and the sparsity of Hawking radiation during the black hole evaporation process. We show that the information is not transmitted at the same rate during the final stages of the evaporation, and that the Hawking radiation is not sparse anymore when the black hole approaches the Planck mass.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
Won Sang Chung ◽  
M. de Montigny

AbstractThis paper examines the effects of a new form of the extended generalized uncertainty principle in the Snyder–de Sitter model on the thermodynamics of the Schwarzschild and Reissner–Nordström black holes. Firstly, we present a generalization of the minimal length uncertainty relation with two deformation parameters. Then we obtain the corrected mass–temperature relation, entropy and heat capacity for Schwarzschild black hole. Also we investigate the effect of the corrected uncertainty principle on the thermodynamics of the charged black holes. Our discussion of the corrected entropy involves a heuristic analysis of a particle which is absorbed by the black hole. Finally, we compare the thermodynamics of a charged black hole with the thermodynamics of a Schwarzschild black hole and with the usual forms, that is, without corrections to the uncertainty principle.


2020 ◽  
Vol 17 (supp01) ◽  
pp. 2040004 ◽  
Author(s):  
Fabio Scardigli

Hawking temperature for a large class of black holes (Schwarzschild, Reissner–Nordström, (Anti) de Sitter, with spherical, toroidal and hyperboloidal topologies) is computed using only laws of classical physics plus the “classical” Heisenberg Uncertainty Principle. This principle is shown to be fully sufficient to get the result, and there is no need to this scope of a Generalized Uncertainty Principle or an Extended Uncertainty Principle.


Author(s):  
Aheibam Keshwarjit Singh ◽  
Irom Ablu Meitei ◽  
Telem Ibungochouba Singh ◽  
Kangujam Yugindro Singh

In this paper, we solve the Dirac Equation in curved space–time, modified by the generalized uncertainty principle, in the presence of an electromagnetic field. Using this, we study the tunneling of [Formula: see text]-spin fermions from Kerr–Newman black hole. Corrections to the Hawking temperature and entropy of the black hole due to quantum gravity effects are also discussed.


Sign in / Sign up

Export Citation Format

Share Document