global monopole
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 40)

H-INDEX

20
(FIVE YEARS 5)

2021 ◽  
Vol 137 (1) ◽  
Author(s):  
Marc de Montigny ◽  
James Pinfold ◽  
Soroush Zare ◽  
Hassan Hassanabadi

2021 ◽  
Vol 104 (12) ◽  
Author(s):  
A. M. Kusuma ◽  
B. N. Jayawiguna ◽  
H. S. Ramadhan

Author(s):  
Riasat Ali ◽  
Rimsha Babar ◽  
Muhammad Asgher ◽  
Syed Asif Ali Shah

This paper provides an extension for Hawking temperature of Reissner–Nordström-de Sitter (RN-DS) black hole (BH) with global monopole as well as [Formula: see text]D charged black hole. We consider the black holes metric and investigate the effects of quantum gravity ([Formula: see text]) on Hawking radiation. We investigate the charged boson particles tunneling through the horizon of black holes by using the Hamilton–Jacobi ansatz phenomenon. In our investigation, we study the quantum radiation to analyze the Lagrangian wave equation with generalized uncertainty principle and calculate the modified Hawking temperatures for black holes. Furthermore, we analyze the charge and correction parameter effects on the modified Hawking temperature and examine the stable and unstable condition of RN-DS BH with global monopole as well as [Formula: see text]D charged black hole.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
H. S. Vieira

AbstractIn this work, we follow the recently revisited f(R) theory of gravity for studying the interaction between quantum scalar particles and the gravitational field of a generalized black hole with an f(R) global monopole. This background has a term playing the role of an effective cosmological constant, which permits us to call it as Schwarzschild-Anti-de Sitter (SAdS) black hole with an f(R) global monopole. We examine the separability of the Klein–Gordon equation with a non-minimal coupling and then we discuss both the massless and massive cases for a conformal coupling. We investigate some physical phenomena related to the asymptotic behavior of the radial function, namely, the black hole radiation, the quasibound states, and the wave eigenfunctions.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Guo-Ping Li ◽  
Ke-Jian He

AbstractIn this paper, we explore three simple models of accretions on a global monopole black hole in f(R) theory, and numerically study the corresponding observational appearances as seen by an observer located at the asymptotic infinity and the certain region out of black hole. For the thin-disk accretion, the results here show that the brighter lensing ring and the darker photon ring that around black hole shadow, always make a small contribution and a negligible contribution to total observed intensity respectively. While, the direct emission of disk contributes a dominant part, and the size of shadow always depends on the disk’s location. For the static and infalling spherical accretions, it turns out that the radiuses of the shadows and photon spheres are always same for both accretions, which implies that the boundary of shadow represents the signature of the spacetime geometry in this case. However, we also find that the brightness of shadow in infalling accretion is darker than that in static case since the Doppler effect is taken into account. In addition, the effect of the global monopole parameter $$\eta $$ η and f(R) parameter $$\psi _0$$ ψ 0 on observational appearances of black hole are clearly emphasized throughout of this paper. Finally, we conclude that black hole shadows and the related rings with some different observable features can be used for us to distinguish black holes from different gravity theories and set the upper limits to the f(R) parameter $$\psi _0$$ ψ 0 .


2021 ◽  
Vol 36 (26) ◽  
pp. 2150191
Author(s):  
Gao-Ming Deng ◽  
Jinbo Fan ◽  
Xinfei Li

As an intriguing topological defect, global monopole’s influence on behaviors of black holes has always been anticipated but still remains obscure. Analyzing the thermodynamics of charged Anti-de Sitter (AdS) black hole incorporating a global monopole manifests that the black hole undergoes a Van der Waals-like first-order phase transition near the critical point. This paper concentrates on further investigating the transition, aiming at clarifying how the global monopole affects the criticality and microstructure of the charged AdS black holes. As a highlight, this research is implemented by employing new state parameters other than (T, P, V) description and contributes to deeper understanding the rich critical phenomena and phase structure of black holes.


2021 ◽  
Vol 136 (7) ◽  
Author(s):  
Marc de Montigny ◽  
Hassan Hassanabadi ◽  
James Pinfold ◽  
Soroush Zare

Author(s):  
KABITA SARKAR ◽  
Samrat Ghosh ◽  
Arunava Bhadra ◽  
Amitabha Mukhopadhyay

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Mengjie Wang ◽  
Zhou Chen ◽  
Qiyuan Pan ◽  
Jiliang Jing

AbstractWe generalize our previous studies on the Maxwell quasinormal modes around Schwarzschild-anti-de-Sitter black holes with Robin type vanishing energy flux boundary conditions, by adding a global monopole on the background. We first formulate the Maxwell equations both in the Regge–Wheeler–Zerilli and in the Teukolsky formalisms and derive, based on the vanishing energy flux principle, two boundary conditions in each formalism. The Maxwell equations are then solved analytically in pure anti-de Sitter spacetimes with a global monopole, and two different normal modes are obtained due to the existence of the monopole parameter. In the small black hole and low frequency approximations, the Maxwell quasinormal modes are solved perturbatively on top of normal modes by using an asymptotic matching method, while beyond the aforementioned approximation, the Maxwell quasinormal modes are obtained numerically. We analyze the Maxwell quasinormal spectrum by varying the angular momentum quantum number $$\ell $$ ℓ , the overtone number N, and in particular, the monopole parameter $$8\pi \eta ^2$$ 8 π η 2 . We show explicitly, through calculating quasinormal frequencies with both boundary conditions, that the global monopole produces the repulsive force.


Sign in / Sign up

Export Citation Format

Share Document