SVM-Based Segmentation-Verification of Handwritten Connected Digits Using the Oriented Sliding Window

Author(s):  
Abdeljalil Gattal ◽  
Youcef Chibani

We propose in this paper a system to recognize handwritten digit strings, which constitutes a difficult task because of overlapping and/or joining of adjacent digits. To resolve this problem, we use a segmentation-verification of handwritten connected digits based conjointly on the oriented sliding window and support vector machine (SVM) classifiers. The proposed approach allows separating adjacent digits according the connection configuration by finding at the same time the interconnection points between adjacent digits and the cutting path. SVM-based segmentation-verification using the global decision module allows the rejection or acceptance of the processed image. Experimental results conducted on a large synthetic database of handwritten digits show the effective use of the oriented sliding window for segmentation-verification.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Han Su ◽  
Minglun Ren ◽  
Anning Wang ◽  
Xiaoan Tang ◽  
Xin Ni ◽  
...  

Forum comments are valuable information for enterprises to discover public preferences and market trends. However, extensive marketing and malicious attack behaviors in forums are always an obstacle for enterprises to make effective use of this information. And these forum spammers are constantly updating technology to prevent detection. Therefore, how to accurately recognize forum spammers has become an important issue. Aiming to accurately recognize forum spammers, this paper changes the research target from understanding abnormal reviews and the suspicious relationship among forum spammers to discover how they must behave (follow or be followed) to achieve their monetary goals. First, we classify forum spammers into automated forum spammers and marketing forum spammers based on different behavioral features. Then, we propose a support vector machine-based automated spammer recognition (ASR) model and a k-means clustering-based marketing spammer recognition (MSR) model. The experimental results on the real-world labelled dataset illustrate the effectiveness of our methods on classification spammer from common users. To the best of our knowledge, this work is among the first to construct behavior-driven recognition models according to the different behavioral patterns of forum spammers.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


Author(s):  
Shikhar P. Acharya ◽  
Ivan G. Guardiola

Radio Frequency (RF) devices produce some amount of Unintended Electromagnetic Emissions (UEEs). UEEs are generally unique to a device and can be used as a signature for the purpose of detection and identification. The problem with UEEs is that they are very low in power and are often buried deep inside the noise band. The research herein provides the application of Support Vector Machine (SVM) for detection and identification of RF devices using their UEEs. Experimental Results shows that SVM can detect RF devices within the noise band, and can also identify RF devices using their UEEs.


2013 ◽  
Vol 721 ◽  
pp. 367-371
Author(s):  
Yong Kui Sun ◽  
Zhi Bin Yu

Analog circuits fault diagnosis using multifractal analysis is presented in this paper. The faulty response of circuit under test is analyzed by multifratal formalism, and the fault feature consists of multifractal spectrum parameters. Support vector machine is used to identify the faults. Experimental results prove the proposed method is effective and the diagnosis accuracy reaches 98%.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


2020 ◽  
Vol 1 (41) ◽  
pp. 77-85
Author(s):  
Hau Hung Nguyen

Handwriting recogination plays an important role in data inputing and processing in the practice. This attracts much attention of many researchers in different fields. In this paper, a new algorithm is proposed by basing on GIST features, Support Vector Machines (SVM) and Tesseract for entering the score on students’ transcript form at Soc Trang Vocational College. The algorithm consists of two main works, i.e., recognizing students’code and recogziing handwritten digit. In the proposed algorithm, all regions of interest are determined and extract their dictint features with using tesseract and GIST. Then, these features are classified by SVM mechanism. Experimental results demonstrated that the proposed algorithm obtained high performance with accuracy up to 96,57% for students’ code and 93,55% for Handwritting scores. Average time was 7,9s per one transcript.


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


2018 ◽  
pp. 1955-1967
Author(s):  
Haifeng Zhao ◽  
Jiangtao Wang ◽  
Wankou Yang

This chapter presents a graph-based approach to automatically categorize plant and insect species. In this approach, the plant leaf and insect objects are segmented from the background semi-automatically. For each object, the contour is then extracted, so that the contour points are used to form the vertices of a graph. We propose a vectorization method to recover clique histogram vectors from the graphs for classification. The clique histogram represents the distribution of one vertex with respect to its adjacent vertices. This treatment permits the use of a codebook approach to represent the graph in terms of a set of codewords that can be used for purposes of support vector machine classification. The experimental results show that the method is not only effective but also robust, and comparable with other methods in the literature for species recognition.


Author(s):  
Zhao Hailong ◽  
Yi Junyan

In recent years, automatic ear recognition has become a popular research. Effective feature extraction is one of the most important steps in Content-based ear image retrieval applications. In this paper, the authors proposed a new vectors construction method for ear retrieval based on Block Discriminative Common Vector. According to this method, the ear image is divided into 16 blocks firstly and the features are extracted by applying DCV to the sub-images. Furthermore, Support Vector Machine is used as classifier to make decision. The experimental results show that the proposed method performs better than classical PCA+LDA, so it is an effective human ear recognition method.


Sign in / Sign up

Export Citation Format

Share Document