scholarly journals A Behavior-Driven Forum Spammer Recognition Method with Its Application in Automobile Forums

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Han Su ◽  
Minglun Ren ◽  
Anning Wang ◽  
Xiaoan Tang ◽  
Xin Ni ◽  
...  

Forum comments are valuable information for enterprises to discover public preferences and market trends. However, extensive marketing and malicious attack behaviors in forums are always an obstacle for enterprises to make effective use of this information. And these forum spammers are constantly updating technology to prevent detection. Therefore, how to accurately recognize forum spammers has become an important issue. Aiming to accurately recognize forum spammers, this paper changes the research target from understanding abnormal reviews and the suspicious relationship among forum spammers to discover how they must behave (follow or be followed) to achieve their monetary goals. First, we classify forum spammers into automated forum spammers and marketing forum spammers based on different behavioral features. Then, we propose a support vector machine-based automated spammer recognition (ASR) model and a k-means clustering-based marketing spammer recognition (MSR) model. The experimental results on the real-world labelled dataset illustrate the effectiveness of our methods on classification spammer from common users. To the best of our knowledge, this work is among the first to construct behavior-driven recognition models according to the different behavioral patterns of forum spammers.

Author(s):  
Zhao Hailong ◽  
Yi Junyan

In recent years, automatic ear recognition has become a popular research. Effective feature extraction is one of the most important steps in Content-based ear image retrieval applications. In this paper, the authors proposed a new vectors construction method for ear retrieval based on Block Discriminative Common Vector. According to this method, the ear image is divided into 16 blocks firstly and the features are extracted by applying DCV to the sub-images. Furthermore, Support Vector Machine is used as classifier to make decision. The experimental results show that the proposed method performs better than classical PCA+LDA, so it is an effective human ear recognition method.


Author(s):  
Abdeljalil Gattal ◽  
Youcef Chibani

We propose in this paper a system to recognize handwritten digit strings, which constitutes a difficult task because of overlapping and/or joining of adjacent digits. To resolve this problem, we use a segmentation-verification of handwritten connected digits based conjointly on the oriented sliding window and support vector machine (SVM) classifiers. The proposed approach allows separating adjacent digits according the connection configuration by finding at the same time the interconnection points between adjacent digits and the cutting path. SVM-based segmentation-verification using the global decision module allows the rejection or acceptance of the processed image. Experimental results conducted on a large synthetic database of handwritten digits show the effective use of the oriented sliding window for segmentation-verification.


2018 ◽  
pp. 774-783
Author(s):  
Zhao Hailong ◽  
Yi Junyan

In recent years, automatic ear recognition has become a popular research. Effective feature extraction is one of the most important steps in Content-based ear image retrieval applications. In this paper, the authors proposed a new vectors construction method for ear retrieval based on Block Discriminative Common Vector. According to this method, the ear image is divided into 16 blocks firstly and the features are extracted by applying DCV to the sub-images. Furthermore, Support Vector Machine is used as classifier to make decision. The experimental results show that the proposed method performs better than classical PCA+LDA, so it is an effective human ear recognition method.


Author(s):  
CHAO WANG ◽  
MINGHU HA ◽  
JIQIANG CHEN ◽  
HONGJIE XING

In order to deal with learning problems of random set samples encountered in real-world, according to random set theory and convex quadratic programming, a new support vector machine based on random set samples is constructed. Experimental results show that the new support vector machine is feasible and effective.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1725
Author(s):  
Seunghyun Kim ◽  
Joongsik Kim ◽  
Moonsoo Ra ◽  
Whoi-Yul Kim

The parking assist system (PAS) provides information of parking slots around the vehicle. As the demand for an autonomous system is increasing, intelligent PAS has been developed to park the vehicle without the driver’s intervention. To locate parking slots, most existing methods detect slot markings on the ground using an around-view monitoring (AVM) image. There are many types of parking slots of different shapes in the real world. Due to this fact, these methods either limit their target types or use predefined slot information of different types to cover the types. However, the approach using predefined slot information cannot handle more complex cases where the slot markings are connected to other line markings and the angle between slot marking is slightly different from the predefined settings. To overcome this problem, we propose a method to detect parking slots of various shapes without predefined type information. The proposed method is the first to introduce a free junction type feature to represent the structure of parking slot junction. Since the parking slot has a modular or repeated junction pattern at both sides, junction pair consisting of one parking slot can be detected using the free junction type feature. In this process, the geometrically symmetric characteristic of the junction pair is crucial to find each junction pair. The entrance of parking slot is reconstructed according to the structure of junction pair. Then, the vacancy of the parking slot is determined by a support vector machine. The Kalman tracker is applied for each detected parking slot to ensure stability of the detection in consecutive frames. We evaluate the performance of the proposed method by using manually collected datasets, captured in different parking environments. The experimental results show that the proposed method successfully detects various types of parking slots without predefined slot type information in different environments.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


Author(s):  
Shikhar P. Acharya ◽  
Ivan G. Guardiola

Radio Frequency (RF) devices produce some amount of Unintended Electromagnetic Emissions (UEEs). UEEs are generally unique to a device and can be used as a signature for the purpose of detection and identification. The problem with UEEs is that they are very low in power and are often buried deep inside the noise band. The research herein provides the application of Support Vector Machine (SVM) for detection and identification of RF devices using their UEEs. Experimental Results shows that SVM can detect RF devices within the noise band, and can also identify RF devices using their UEEs.


2013 ◽  
Vol 721 ◽  
pp. 367-371
Author(s):  
Yong Kui Sun ◽  
Zhi Bin Yu

Analog circuits fault diagnosis using multifractal analysis is presented in this paper. The faulty response of circuit under test is analyzed by multifratal formalism, and the fault feature consists of multifractal spectrum parameters. Support vector machine is used to identify the faults. Experimental results prove the proposed method is effective and the diagnosis accuracy reaches 98%.


Sign in / Sign up

Export Citation Format

Share Document