APPLICATIONS OF CALCIUM PHOSPHATE NANOPARTICLES IN POROUS HARD TISSUE ENGINEERING SCAFFOLDS

NANO ◽  
2012 ◽  
Vol 07 (04) ◽  
pp. 1230004 ◽  
Author(s):  
ZHE WANG ◽  
ZHURONG TANG ◽  
FANGZHU QING ◽  
YOULIANG HONG ◽  
XINGDONG ZHANG

To repair bone defects, an important approach is to fabricate tissue engineering scaffolds as substitutions to replace auto-/allologous bones. Currently, processing a biomaterial into three-dimensional porous scaffolds and incorporating the calcium phosphate (Ca–P) nanoparticles into scaffolds profile two main characteristics of bone tissue engineering scaffolds. Based on this fact, in this paper we describe the design principles of the Ca–P nanoparticle-based and porous bone tissue engineering scaffolds. Then we summarize a variety of the Ca–P nanoparticle-based scaffolds, including discussion of the integration of the Ca–P nanoparticles with ceramics and polymers, followed by introduction of safety of the Ca–P nanoparticles in scaffolds.

Author(s):  
Viktoriya Sokolova ◽  
Kathrin Kostka ◽  
K. T. Shalumon ◽  
Oleg Prymak ◽  
Jyh-Ping Chen ◽  
...  

AbstractPorous scaffolds of poly(lactide-co-glycolide) (PLGA; 85:15) and nano-hydroxyapatite (nHAP) were prepared by an emulsion-precipitation procedure from uniform PLGA–nHAP spheres (150–250 µm diameter). These spheres were then thermally sintered at 83 °C to porous scaffolds that can serve for bone tissue engineering or for bone substitution. The base materials PLGA and nHAP and the PLGA–nHAP scaffolds were extensively characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The scaffold porosity was about 50 vol% as determined by relating mass and volume of the scaffolds, together with the computed density of the solid phase (PLGA–nHAP). The cultivation of HeLa cells demonstrated their high cytocompatibility. In combination with DNA-loaded calcium phosphate nanoparticles, they showed a good activity of gene transfection with enhanced green fluorescent protein (EGFP) as model protein. This is expected enhance bone growth around an implanted scaffold or inside a scaffold for tissue engineering.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2011 ◽  
Vol 493-494 ◽  
pp. 826-831
Author(s):  
A.C.B.M. Fook ◽  
Thiago Bizerra Fideles ◽  
R.C. Barbosa ◽  
G.T.F.S. Furtado ◽  
G.Y.H. Sampaio ◽  
...  

The application of a hybrid composite consisting of biopolymer and calcium phosphate, similar morphology and properties of natural bone, may be a way to solve the problem of the fragility of ceramics without reducing its mechanical properties, retaining the properties of biocompatibility and high bioactivity. This work aims at the preparation and characterization of three-dimensional scaffolds composite HA / biopolymers (chitosan and gelatin). The freeze-drying technique was employed in this study to obtain these frameworks and partial results showed the effectiveness of this method. This involved the study of structural, chemical and morphological frameworks, in order to direct the research suggested the application. The X Ray Diffraction (XRD) and infrared spectroscopy and Fourier transform (FTIR) results confirmed the formation of hydroxyapatite (HA) phase and the presence of characteristic bands of HA and biopolymers in all compositions. The microstructure of the scaffolds study conducted by Scanning Electron Microscopy (SEM) revealed the formation of longitudinally oriented microchannels with interconnected pores. In all compositions the porous scaffolds showed varying sizes and mostly larger than 100μm, and is therefore considered materials with potential for application in bone tissue engineering.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1570 ◽  
Author(s):  
Tanya J. Levingstone ◽  
Simona Herbaj ◽  
Nicholas J. Dunne

Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients’ quality of life and the costs on the health systems. This impended need has led the research community’s efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors’ loading and release, and their application in bone tissue engineering.


2012 ◽  
Vol 512-515 ◽  
pp. 1815-1820
Author(s):  
Qing Feng Zan ◽  
Yuan Zhuang ◽  
Li Min Dong ◽  
Chen Wang ◽  
Ning Wen ◽  
...  

Bone tissue engineering provides a new way to repair the bone defect in orthopaedics. The scaffolds, porous materials with excellent biocompatibility, bioactivity and biodegradability, play an important role in bone tissue engineering. Furthermore, the bioactivity of the pore interior surfaces is very important for cell attachment, differentiation and growth, as well as new bone tissue ingrowth into pores. In this paper, β-TCP was selected as materials of scaffolds, and its bioactivity was improved by activating the interior surfaces of pore walls. The porous β-TCP scaffolds with about 50~300μm of pore size and above 80% of porosity were obtained by 3D-gel-laminated processing. Their surfaces of the scaffolds were easily covered by a low crystallized bone-like apatite layer, which determined by XRD and FTIR, after immersing in 1.5SBF solution following pre-treatment by NaOH solution. MTT and ALP assays were performed after cells cultured on the porous scaffolds with bone-like structure, and the results showed higher proliferation rate and differentiation level than that on the scaffolds without treatment, which indicated that the porous β-TCP scaffolds with bone-like apatite layer on surfaces of pore walls possess higher bioactivity. Therefore, the bioactivity of tissue engineering scaffolds could be improved by deposited bone-like apatite layer on their surfaces.


2015 ◽  
Vol 21 (6) ◽  
pp. 716-724 ◽  
Author(s):  
Ramakrishna Vasireddi ◽  
Bikramjit Basu

Purpose – The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach – The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings – The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value – One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone–cartilage interface.


2009 ◽  
Vol 11 (5) ◽  
pp. B41-B46 ◽  
Author(s):  
Hermann Seitz ◽  
Ulrike Deisinger ◽  
Barbara Leukers ◽  
Rainer Detsch ◽  
Günter Ziegler

Sign in / Sign up

Export Citation Format

Share Document