Commutative rings whose ideal lattices are complemented

2019 ◽  
Vol 12 (03) ◽  
pp. 1950039
Author(s):  
Ivan Chajda ◽  
Helmut Länger

We characterize those commutative rings [Formula: see text] whose ideal lattice [Formula: see text] endowed with the annihilation operation is an ortholattice. Moreover, we provide an analogous characterization for the annihilator lattice [Formula: see text] endowed with the annihilation operation. Since the ideal lattice of [Formula: see text] is modular, [Formula: see text] is already an orthomodular lattice provided it is an ortholattice. However, there exist also commutative rings whose ideal lattices are complemented but the complementation differs from annihilation. We present an example of such a ring and develop a procedure producing infinitely many rings with this property. Finally, we provide a sufficient condition for double annihilation to be a homomorphism from [Formula: see text] onto [Formula: see text].

2016 ◽  
Vol 14 (1) ◽  
pp. 324-337 ◽  
Author(s):  
Yu Xi Zou ◽  
Xiao Long Xin ◽  
Peng Fei He

AbstractIn the paper, we introduce the notion of annihilators in BL-algebras and investigate some related properties of them. We get that the ideal lattice (I(L), ⊆) is pseudo-complemented, and for any ideal I, its pseudo-complement is the annihilator I⊥ of I. Also, we define the An (L) to be the set of all annihilators of L, then we have that (An(L); ⋂,∧An(L),⊥,{0}, L) is a Boolean algebra. In addition, we introduce the annihilators of a nonempty subset X of L with respect to an ideal I and study some properties of them. As an application, we show that if I and J are ideals in a BL-algebra L, then $J_I^ \bot $ is the relative pseudo-complement of J with respect to I in the ideal lattice (I(L), ⊆). Moreover, we get some properties of the homomorphism image of annihilators, and also give the necessary and sufficient condition of the homomorphism image and the homomorphism pre-image of an annihilator to be an annihilator. Finally, we introduce the notion of α-ideal and give a notation E(I ). We show that (E(I(L)), ∧E, ∨E, E(0), E(L) is a pseudo-complemented lattice, a complete Brouwerian lattice and an algebraic lattice, when L is a BL-chain or a finite product of BL-chains.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


2010 ◽  
Vol 83 (2) ◽  
pp. 273-288 ◽  
Author(s):  
D. G. FITZGERALD ◽  
KWOK WAI LAU

AbstractThe partition monoid is a salient natural example of a *-regular semigroup. We find a Galois connection between elements of the partition monoid and binary relations, and use it to show that the partition monoid contains copies of the semigroup of transformations and the symmetric and dual-symmetric inverse semigroups on the underlying set. We characterize the divisibility preorders and the natural order on the (straight) partition monoid, using certain graphical structures associated with each element. This gives a simpler characterization of Green’s relations. We also derive a new interpretation of the natural order on the transformation semigroup. The results are also used to describe the ideal lattices of the straight and twisted partition monoids and the Brauer monoid.


2019 ◽  
Vol 19 (09) ◽  
pp. 2050173
Author(s):  
Xiaogang Liu ◽  
Chengxin Yan

Let [Formula: see text] denote the unitary homogeneous bi-Cayley graph over a finite commutative ring [Formula: see text]. In this paper, we determine the energy of [Formula: see text] and that of its complement and line graph, and characterize when such graphs are hyperenergetic. We also give a necessary and sufficient condition for [Formula: see text] (respectively, the complement of [Formula: see text], the line graph of [Formula: see text]) to be Ramanujan.


1988 ◽  
Vol 30 (2) ◽  
pp. 137-143 ◽  
Author(s):  
T. S. Blyth ◽  
J. C. Varlet

Recently we introduced the notion of an MS-algebra as a common abstraction of a de Morgan algebra and a Stone algebra [2]. Precisely, an MS-algebra is an algebra 〈L; ∧, ∨ ∘, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that 〈L; ∧, ∨, 0, 1〉 is a distributive lattice with least element 0 and greatest element 1, and x → x∘ is a unary operation such that x ≤ x∘∘, (x ∧ y)∘ = x∘ ∨ y∘ and 1∘ = 0. It follows that ∘ is a dual endomorphism of L and that L∘∘ = {x∘∘ x ∊ L} is a subalgebra of L that is called the skeleton of L and that belongs to M, the class of de Morgan algebras. Clearly, theclass MS of MS-algebras is equational. All the subvarieties of MS were described in [3]. The lattice Λ (MS) of subvarieties of MS has 20 elements (see Fig. 1) and its non-trivial part (we exclude T, the class of one-element algebras) splits into the prime filter generated by M, that is [M, M1], the prime ideal generated by S, that is [B, S], and the interval [K, K2 ∨ K3].


2015 ◽  
Vol 22 (04) ◽  
pp. 567-580
Author(s):  
Ayesha Asloob Qureshi

In this paper we consider Hibi rings and Rees rings attached to a poset. We classify the ideal lattices of posets whose Hibi relations are indispensable and the ideal lattices of posets whose Hibi relations form a quadratic Gröbner basis with respect to the rank lexicographic order. Similar classifications are obtained for Rees rings of Hibi ideals.


Author(s):  
D. G. Northcott

The results and methods of algebraic geometry, when analysed in terms of modern algebra, have revealed on several occasions algebraic principles of surprising generality. Recently it has become apparent that the geometric theory of infinitely near points has, as it were, an abstract form which forms part of the ideal theory of commutative rings, but there are many details which have yet to be worked out. Roughly speaking, one may say that what corresponds to the theory of the sequence of points on a curve branch is now known in some detail, and forms a substantial addition to our knowledge of the properties of one-dimensional local rings†; but the construction of an abstract theory similarly related to the theory of neighbourhoods in n-dimensional projective space can hardly be said to have been started. A number of necessary preliminary steps were taken by the author in (3)—in the process of providing algebraic foundations for certain applications of dilatation theory—and later some applications were made to 2-dimensional problems. However, the present paper should be regarded as an attempt to initiate a dilatation theory of regular local rings to run parallel to the general theory of infinitely near points in n-dimensional space.


Author(s):  
B. Hartley ◽  
A. E. Zalesskii

Letqbe a prime power, which will be fixed throughout the paper, letkbe a field, and letbe the field withqelements. LetGn(k)be the general linear groupGL(n, k), andSn(k)the special linear groupSL(n, k). The corresponding groups overwill be denoted simply byGnandSn. We may embedGn(k)inGn+1(k)via the mapForming the direct limit of the resulting system, we obtain thestable general linear groupG∞(k) overk.


Sign in / Sign up

Export Citation Format

Share Document