FABRICATION AND CHARACTERIZATION OF FUNCTIONALLY GRADED Ni–Ti MULTILAYER THIN FILMS

2009 ◽  
Vol 02 (02) ◽  
pp. 61-66 ◽  
Author(s):  
H. TIAN ◽  
D. SCHRYVERS ◽  
K. P. MOHANCHANDRA ◽  
G. P. CARMAN ◽  
J. VAN HUMBEECK

A functionally graded multilayer Ni – Ti thin film was deposited on a SiO 2/ Si substrate by d.c. sputtering using a ramped heated Ni – Ti alloy target. The stand-alone films were crystallized at 500°C in vacuum better than 10-7 Torr. Transmission electron microscopy micrographs taken along the film cross section show two distinct regions, thin and thick, with weak R and B2 phases, respectively. The film compositions along the thickness were measured and quantified using the standard-less EELSMODEL method. The film deposited during the initial thermal ramp (thin regions) displays an average of 54 at.% Ni while the film deposited at a more elevated target temperature (thick regions) shows about 51 at.% Ni .

2005 ◽  
Vol 483-485 ◽  
pp. 189-192
Author(s):  
David Méndez ◽  
A. Aouni ◽  
Daniel Araújo ◽  
Gabriel Ferro ◽  
Yves Monteil ◽  
...  

One of the problems with Si(001)/3C-SiC templates is that they involve highly defective interfaces due to the presence of misfit dislocations, voids and planar defects that degrade the SiC layer quality. A way to accommodate the high lattice mismatch between these materials and reduce the voids density is to carbonize the Si substrate before the epitaxial growth. In this contribution an alternative way to reduce planar defects density is presented by analyzing the relationship between planar defects and voids. Planar view and cross section transmission electron microscopy micrographs show a diminution of planar defects in the regions surrounding the voids. Due to the lower elastic energy over the voids and/or to a lateral growth in these regions, the generation of planar defects is partially deactivated, improving locally the crystalline quality of the SiC layer. The introduction of such cavities can be thus seen as a new parameter of Si/SiC templates design.


Author(s):  
Dirk Doyle ◽  
Lawrence Benedict ◽  
Fritz Christian Awitan

Abstract Novel techniques to expose substrate-level defects are presented in this paper. New techniques such as inter-layer dielectric (ILD) thinning, high keV imaging, and XeF2 poly etch overflow are introduced. We describe these techniques as applied to two different defects types at FEOL. In the first case, by using ILD thinning and high keV imaging, coupled with focused ion beam (FIB) cross section and scanning transmission electron microscopy (STEM,) we were able to judge where to sample for TEM from a top down perspective while simultaneously providing the top down images giving both perspectives on the same sample. In the second case we show retention of the poly Si short after removal of CoSi2 formation on poly. Removal of the CoSi2 exposes the poly Si such that we can utilize XeF2 to remove poly without damaging gate oxide to reveal pinhole defects in the gate oxide. Overall, using these techniques have led to 1) increased chances of successfully finding the defects, 2) better characterization of the defects by having a planar view perspective and 3) reduced time in localizing defects compared to performing cross section alone.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


1989 ◽  
Vol 148 ◽  
Author(s):  
Zuzanna Liliental-Weber ◽  
Raymond P. Mariella

ABSTRACTTransmission electron microscopy of GaAs grown on Si for metal-semiconductor-metal photodetectors is presented in this paper. Two kinds of samples are compared: GaAs grown on a 15 Å Si epilayer grown on GaAs, and GaAs grown at low temperature (300°C) on Si substrates. It is shown that the GaAs epitaxial layer grown on thin Si layer has reverse polarity to the substrate (antiphase relation). Higher defect density is observed for GaAs grown on Si substrate. This higher defect density correlates with an increased device speed, but with reduced sensitivity.


2015 ◽  
Vol 41 (2) ◽  
pp. 2654-2667 ◽  
Author(s):  
Smilja Marković ◽  
Miodrag J. Lukić ◽  
Srečo Davor Škapin ◽  
Boban Stojanović ◽  
Dragan Uskoković

2011 ◽  
Vol 328-330 ◽  
pp. 565-568
Author(s):  
Yue Yang ◽  
Hua Wu

Nickel layer electroless deposited on aluminum substrate was alloyed by Nd-YAG pulsed laser irradiation. Solidification microstructure was characterized through cross section, showing typical microstructure that were located in upper and middle melted zone and interface of melted pool and substrate, respectively. The microstructure was analyzed by transmission electron microscopy (TEM). Followed by the observations, the eutectic growth process was analyzed.


Sign in / Sign up

Export Citation Format

Share Document