V2O3 nanofoam@activated carbon composites as electrode materials of supercapacitors
Electrode materials with high performance and low cost are demanding in supercapacitor applications. Novel V2O3 nanofoam@activated carbon composites have been prepared simply and cost-efficiently. Due to the mesoporous structure and high specific surface of V2O3 nanofoam and the good electric conductivity of activated carbon, the obtained composites exhibit an obviously improved specific capacitance as high as 185[Formula: see text]F/g, which overpasses bulk V2O3 (119[Formula: see text]F/g) and activated carbon (113[Formula: see text]F/g). The rate capability of V2O3 nanofoam@activated carbon composites has also been improved, owing to the increased electron transport accelerated by the activated carbon and the fast electrolyte ion intercalation/deintercalation facilitated by mesopores of V2O3 nanofoam. The composites retain 56% of initial specific capacitance when the current density increases from 0.05[Formula: see text]A/g to 1.0[Formula: see text]A/g. Therefore, the obtained V2O3 nanofoam@activated carbon composites are low-cost electrode materials with obviously improved electrochemical performance, which are idea for supercapacitor application.