V2O3 nanofoam@activated carbon composites as electrode materials of supercapacitors

2017 ◽  
Vol 10 (06) ◽  
pp. 1750077 ◽  
Author(s):  
Xun Zhang ◽  
Zhonglin Bu ◽  
Rui Xu ◽  
Bing Xie ◽  
Hong-Yi Li

Electrode materials with high performance and low cost are demanding in supercapacitor applications. Novel V2O3 nanofoam@activated carbon composites have been prepared simply and cost-efficiently. Due to the mesoporous structure and high specific surface of V2O3 nanofoam and the good electric conductivity of activated carbon, the obtained composites exhibit an obviously improved specific capacitance as high as 185[Formula: see text]F/g, which overpasses bulk V2O3 (119[Formula: see text]F/g) and activated carbon (113[Formula: see text]F/g). The rate capability of V2O3 nanofoam@activated carbon composites has also been improved, owing to the increased electron transport accelerated by the activated carbon and the fast electrolyte ion intercalation/deintercalation facilitated by mesopores of V2O3 nanofoam. The composites retain 56% of initial specific capacitance when the current density increases from 0.05[Formula: see text]A/g to 1.0[Formula: see text]A/g. Therefore, the obtained V2O3 nanofoam@activated carbon composites are low-cost electrode materials with obviously improved electrochemical performance, which are idea for supercapacitor application.

2014 ◽  
Vol 627 ◽  
pp. 3-6 ◽  
Author(s):  
M.Y. Ho ◽  
Poi Sim Khiew ◽  
D. Isa ◽  
T.K. Tan ◽  
W.S. Chiu ◽  
...  

In this study, a symmetric electrochemical capacitor has been fabricated by adopting the lithiated compound (LiFePO4)-activated carbon (AC) composite as the core electrode materials. The electrochemical performances of the prepared supercapacitor were studied using cyclic voltammetry (CV) in 1.0 M Na2SO3 solution. Experimental results reveal that the maximum specific capacitance of 112.41 F/g is obtained in 40 wt % LiFePO4 loading on AC electrode in comparison to that of pure AC electrode (76.24 F/g) in 1 M Na2SO3. The enhanced capacitive performance of the 40 wt % LiFeO4 –AC composite electrode is believed attributed to the contribution of synergistic effect of electric double layer capacitance (EDLC) on the surface of AC as well as pseudocapacitance via intercalation/extraction of Na+, SO32-and Li+ ions in LiFePO4 lattices. The composite electrodes can sustain a stable capacitive performance at least 1000 cycles with only ~5 % specific capacitance loss after 1000 cycles. Based on the findings above, 40 wt % LiFeO4 –AC composite electrodes which utilise low cost materials and environmental friendly electrolyte is worth being investigated in more details.


2020 ◽  
Vol 10 (1) ◽  
pp. 422
Author(s):  
Haihan Zhang ◽  
Li Xu ◽  
Guoji Liu

In this work, nitrogen-doped carbon materials (NCMs) were prepared using aniline-phenol benzoxazine (BOZ) or aniline-cardanol benzoxazine as the carbon precursor and SBA-15 as the hard template. The effects of the carbonization temperature (700, 800, and 900 °C) and different nitrogen contents on the electrochemical properties of carbon materials were investigated. The samples synthesized using aniline-phenol benzoxazine as precursors and treated at 900 °C (NCM-900) exhibited an excellent electrochemical performance. The specific capacitance was 460 F/g at a current density of 0.25 A/g and the cycle stability was excellent (96.1% retention rate of the initial capacitance after 2000 cycles) in a 0.5 M H2SO4 electrolyte with a three-electrode system. Furthermore, NCM-900 also exhibited a high specific capacitance, comparable energy/power densities, and excellent cycling stability using a symmetrical electrode system. The characterization of the morphology and structure of the materials suggests it possessed an ordered mesoporous structure and a large specific surface area. NCM-900 could thus be considered a promising electrode material for supercapacitors.


Author(s):  
Rui Zhou ◽  
Jian-Gan Wang ◽  
Hongzhen Liu ◽  
Huanyan Liu ◽  
Dandan Jin ◽  
...  

A low-cost bio-mass-derived carbon substrate has been employed to synthesize MoS2@carbon composites through a hydrothermal method. Carbon fibers derived from natural cotton provide a three-dimensional and open framework for the uniform growth of MoS2 nanosheets, thus constructing hierarchically coaxial architecture. The unique structure could synergistically benefit fast Li-ion and electron transport from the conductive carbon scaffold and porous MoS2 nanostructures. As a result, the MoS2@carbon composites, when served as anodes for Li-ion batteries, exhibit a high reversible specific capacity of 820 mAh g-1, high-rate capability (457 mAh g-1 at 2 A g-1), and excellent cycling stability. The superior electrochemical performance makes the MoS2@carbon composites to be low-cost and promising anode materials for Li-ion batteries.


2016 ◽  
Vol 40 (1) ◽  
pp. 340-347 ◽  
Author(s):  
Zhihong Ai ◽  
Zhonghua Hu ◽  
Yafei Liu ◽  
Mengxuan Fan ◽  
Peipei Liu

Novel flower-like CoNi2S4/CNT composites are prepared by the precursor transformation method. Ultrahigh specific capacitance and good rate capability are achieved. The desirable mesoporous structure and high conductivity give the superior performance.


2014 ◽  
Vol 2 (30) ◽  
pp. 11706-11715 ◽  
Author(s):  
Zhi Jin ◽  
Xiaodong Yan ◽  
Yunhua Yu ◽  
Guangjie Zhao

The combination of the high micropore surface area and the controlled mesopore size and mesopore/micropore ratio is responsible for high specific capacitance and excellent rate capability.


NANO ◽  
2017 ◽  
Vol 12 (01) ◽  
pp. 1750010
Author(s):  
S. Sepahvand ◽  
S. Ghasemi ◽  
Z. Sanaee

Electric field enhanced approach has been used to synthesize different copper hydroxide morphologies as high-performance supercapacitors electrode materials. Employing this efficient, simple and low cost method, various shapes such as rod, flower and cube with an average grain size of 30[Formula: see text]nm to 1[Formula: see text][Formula: see text]m were obtained on the copper substrate. The results revealed that applied electric field considerably accelerates the formation time of nanostructures from several days to close to 1[Formula: see text]min, where some of the desired nanostructures were obtained even in 1[Formula: see text]s. The electrochemical properties of different morphologies were compared using cyclic voltammograms and charge/discharge tests and electrochemical impedance spectroscopy. The obtained results demonstrated that the two types of fabricated structures showed high maximum areal and specific capacitance of 42[Formula: see text]mF/cm2 and 178[Formula: see text]F/g at scan rate of 20[Formula: see text]mVs[Formula: see text], respectively, which make them excellent and promising electrode materials for supercapacitors.


Author(s):  
Baixue Ouyang ◽  
Tao Chen ◽  
Ran Qin ◽  
Penggao Liu ◽  
Xiaowen Fan ◽  
...  

Titanium based oxides are pomising electrode materials due to the appropriate operating voltage, small strain expansion, fast rate capability, safety, and low cost. Carbon materials exhibit a high cyclic stability...


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7393
Author(s):  
Linyue Tong ◽  
Laura A. Sonnenberg ◽  
Wei Wu ◽  
Steven M. Boyer ◽  
Maggie T. Fox ◽  
...  

Composite porous supercapacitor electrodes were prepared by growing poly(3,4-ethylenedioxythiophene) (PEDOT) on graphite nanoplatelet- or graphene nanoplatelet-deposited open-cell polyurethane (PU) sponges via a vapor phase polymerization (VPP) method. The resulting composite supercapacitor electrodes exhibited great capacitive performance, with PEDOT acting as both the conductive binder and the active material. The chemical composition was characterized by Raman spectroscopy and the surface morphology was characterized by scanning electron microscopy (SEM). Cyclic voltammetry (CV), charge-discharge (CD) tests and electrochemical impedance spectroscopy were utilized to study the electrical performance of the composite electrodes produced in symmetrically configured supercapacitor cells. The carbon material deposited on PU substrates and the polymerization temperature of PEDOT affected significantly the PEDOT morphology and the electrical properties of the resulting composite sponges. The highest areal specific capacitance 798.2 mF cm−2 was obtained with the composite sponge fabricated by VPP of PEDOT at 110 °C with graphene nanoplatelet-deposited PU sponge substrate. The capacitance retention of this composite electrode was 101.0% after 10,000 charging–discharging cycles. The high flexibility, high areal specific capacitance, excellent long-term cycling stability and low cost make these composite sponges promising electrode materials for supercapacitors.


2018 ◽  
Vol 55 (1B) ◽  
pp. 257
Author(s):  
Van Man Tran

Carbon materials i.e. activated carbon, carbon aerogel, carbon nanotubes (CNTs)… store a high electric power and a great stable cyclability when they are used as electrode materials in electrical double–layers capacitor (EDLC). In this work, activated carbon from coconut shells which was cooperatively provided by the Tra Bac Joint Stock Corporation–TRABACO was investigated as electrode materials in EDLC. Raw carbon material with large particle size was crushed and sieved to obtain a 43 µm grain size fraction for electrochemical characterization. The symmetric EDLC configuration based on Tra Bac carbon was tested in Swagelok–type cell using KOH electrolyte in the potential range 0–1 V. The CV curves indicated that charges can be stored enormously with a high reversibility and stability. The high performance of EDLC based carbon in KOH electrolyte could be further improved by variation of electrode composition. The rate capability of the material was also studied under different current ranges. In our best results, a specific capacitance of 20 F/g was obtained at the charge–discharge current of 1 A/g. Even at very high applied current range, the capacitance dropped slowly, less than fifteen percent.


Sign in / Sign up

Export Citation Format

Share Document