scholarly journals Suppression of the Primordial Gravitational Waves

2016 ◽  
Vol 43 ◽  
pp. 1660204 ◽  
Author(s):  
Gansukh Tumurtushaa ◽  
Seoktae Koh ◽  
Bum-Hoon Lee

We study the primordial gravitational waves induced by space-space condensate inflation model. For modes that cross the comoving horizon during matter dominated era, we calculate the energy spectrum of gravitational waves. The energy spectrum of gravitational waves for our model has significantly suppressed in the low frequency range. The suppression occurs due to the phase transition during the early evolution of the Universe and depends on model parameter.

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 73
Author(s):  
Jaume de Haro ◽  
Llibert Aresté Saló

Some of the most important quintessential inflation scenarios, such as the Peebles–Vilenkin model, are described in detail. These models are able to explain the early- and late-time accelerated expansions of our universe, and the phase transition from the end of inflation to the beginning of kination where the adiabatic evolution of the universe was broken in order to produce enough particles to reheat the universe with a viable temperature, thereby aligning with the Hot Big Bang universe. In addition, while considering the reheating to be due to the gravitational production of superheavy particles conformally coupled to gravity, we checked that the considered scenarios do not suffer problems due to the overproduction of gravitational waves at the end of inflation, and thus the validity of Big Bang nucleosynthesis is preserved.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Anson Hook ◽  
Gustavo Marques-Tavares ◽  
Davide Racco

Abstract The low frequency part of the gravitational wave spectrum generated by local physics, such as a phase transition or parametric resonance, is largely fixed by causality, offering a clean window into the early Universe. In this work, this low frequency end of the spectrum is analyzed with an emphasis on a physical understanding, such as the suppressed production of gravitational waves due to the excitation of an over-damped harmonic oscillator and their enhancement due to being frozen out while outside the horizon. Due to the difference between sub-horizon and super-horizon physics, it is inevitable that there will be a distinct spectral feature that could allow for the direct measurement of the conformal Hubble rate at which the phase transition occurred. As an example, free-streaming particles (such as the gravity waves themselves) present during the phase transition affect the production of super-horizon modes. This leads to a steeper decrease in the spectrum at low frequencies as compared to the well-known causal k3 super-horizon scaling of stochastic gravity waves. If a sizable fraction of the energy density is in free-streaming particles, they even lead to the appearance of oscillatory features in the spectrum. If the universe was not radiation dominated when the waves were generated, a similar feature also occurs at the transition between sub-horizon to super-horizon causality. These features are used to show surprising consequences, such as the fact that a period of matter domination following the production of gravity waves actually increases their power spectrum at low frequencies.


2019 ◽  
Vol 489 (3) ◽  
pp. 3547-3552
Author(s):  
Hiroki Kumamoto ◽  
Yuya Imasato ◽  
Naoyuki Yonemaru ◽  
Sachiko Kuroyanagi ◽  
Keitaro Takahashi

Abstract We probe ultra-low-frequency gravitational waves (GWs) with statistics of spin-down rates of millisecond pulsars (thereafter MSPs) by a method proposed in our previous work. The considered frequency range is 10−12 Hz ≲ fGW ≲ 10−10  Hz . The effect of such low-frequency GWs appears as a bias to spin-down rates that has a quadrupole pattern in the sky. We use the skewness of the spin-down rate distribution and the number of MSPs with negative spin-down rates to search for the bias induced by GWs. Applying this method to 149 MSPs selected from the ATNF pulsar catalogue, we derive upper bounds on the time derivative of the GW amplitudes of $\dot{h} \lt 6.2 \times 10^{-18}~{\rm s}^{-1}$ and $\dot{h} \lt 8.1 \times 10^{-18}~{\rm s}^{-1}$ in the directions of the Galactic Centre and M87, respectively. Approximating the GW amplitude as $\dot{h} \sim 2 \pi f_{\rm GW} h$, the bounds translate into h < 3 × 10−8 and h < 4 × 10−8, respectively, for fGW = 1/(1000 yr). Finally, we give the implications to possible supermassive black hole binaries at these sites.


2017 ◽  
Vol 26 (02) ◽  
pp. 1750003 ◽  
Author(s):  
Basem Ghayour

The generated relic gravitational waves underwent several stages of evolution of the universe such as inflation and reheating. These stages were affected on the shape of spectrum of the waves. As well known, at the end of inflation, the scalar field [Formula: see text] oscillates quickly around some point where potential [Formula: see text] has a minimum. The end of inflation stage played a crucial role on the further evolution stages of the universe because particles were created and collisions of the created particles were responsible for reheating the universe. There is a general range for the frequency of the spectrum [Formula: see text])[Formula: see text]Hz. It is shown that the reheating temperature can affect on the frequency of the spectrum as well. There is constraint on the temperature from cosmological observations based on WMAP-9 and Planck. Therefore, it is interesting to estimate allowed value of frequencies of the spectrum based on general range of reheating temperature like few MeV [Formula: see text] GeV, WMAP-9 and Planck data then compare the spectrum with sensitivity of future detectors such as LISA, BBO and ultimate-DECIGIO. The obtained results of this comparison give us some more chance for detection of the relic gravitational waves.


In addition to being fascinating objects to study in their own right, pulsars are exquisite tools for probing a variety of issues in basic physics. Recycled pulsars, thought to have been spun up in previous episodes of mass accretion from orbiting companion stars, are especially well suited for such applications. They are extraordinarily stable clocks, approaching and perhaps exceeding the long-term stabilities of the best terrestrial time standards. Most of them are found in binary systems, with orbital velocities as large as 10 -3 c. They provide unique opportunities for measuring neutron star masses, thereby yielding fundamental astrophysical data difficult to acquire by any other means. And they open the way for high precision tests of the nature of gravity under conditions much more ‘relativistic ’ than found anywhere within the Solar System. Among other results, pulsar timing observations have convincingly established the existence of quadrupolar gravitational waves propagating at the speed of light. They have also placed interesting limits on possible departures of the strong-field nature of gravity from general relativity, on the rate of change of Newton’s constant, G , and on the energy density of low-frequency gravitational waves in the universe.


2009 ◽  
Vol 24 (04) ◽  
pp. 657-669 ◽  
Author(s):  
PIERRE BINÉTRUY

I discuss here some of the deeper connections between the physics studied at the LHC (electroweak phase transition, physics beyond the Standard Model, extra dimensions) and some of the most important issues in the field of particle astrophysics and cosmology (dark matter, primordial gravitational waves, black holes,…).


2017 ◽  
Vol 26 (10) ◽  
pp. 1750114 ◽  
Author(s):  
Archil Kobakhidze ◽  
Adrian Manning ◽  
Jason Yue

Within the Standard Model with nonlinearly realized electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper, we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self-coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We demonstrate an intriguing interplay between collider measurements of the Higgs self-coupling and these potential gravitational wave measurements. We find that for the range of relatively large cubic couplings, [Formula: see text], [Formula: see text]mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, [Formula: see text][Formula: see text]mHz.


Sign in / Sign up

Export Citation Format

Share Document