scholarly journals Congestion Avoidance in Low-Voltage Networks by using the Advanced Metering Infrastructure

2019 ◽  
Vol 46 (3) ◽  
pp. 89-91
Author(s):  
Benoit Vinot ◽  
Florent Cadoux ◽  
Nicolas Gast
Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1156 ◽  
Author(s):  
Nikoleta Andreadou ◽  
Evangelos Kotsakis ◽  
Marcelo Masera

The modernization of the distribution grid requires a huge amount of data to be transmitted and handled by the network. The deployment of Advanced Metering Infrastructure systems results in an increased traffic generated by smart meters. In this work, we examine the smart meter traffic that needs to be accommodated by a real distribution system. Parameters such as the message size and the message transmission frequency are examined and their effect on traffic is showed. Limitations of the system are presented, such as the buffer capacity needs and the maximum message size that can be communicated. For this scope, we have used the parameters of a real distribution network, based on a survey at which the European Distribution System Operators (DSOs) have participated. For the smart meter traffic, we have used two popular specifications, namely the G3-PLC–“G3 Power Line communication” and PRIME–acronym for “PoweRline Intelligent Metering Evolution”, to simulate the characteristics of a system that is widely used in practice. The results can be an insight for further development of the Information and Communication Technology (ICT) systems that control and monitor the Low Voltage (LV) distribution grid. The paper presents an analysis towards identifying the needs of distribution networks with respect to telecommunication data as well as the main parameters that can affect the Inverse Fast Fourier Transform (IFFT) system performance. Identifying such parameters is consequently beneficial to designing more efficient ICT systems for Advanced Metering Infrastructure.


2014 ◽  
Vol 15 (6) ◽  
pp. 607-619 ◽  
Author(s):  
Balakrishna Pamulaparthy ◽  
Swarup KS ◽  
Rajagopal Kommu

Abstract Distribution automation (DA) applications are limited to feeder level today and have zero visibility outside of the substation feeder and reaching down to the low-voltage distribution network level. This has become a major obstacle in realizing many automated functions and enhancing existing DA capabilities. Advanced metering infrastructure (AMI) systems are being widely deployed by utilities across the world creating system-wide communications access to every monitoring and service point, which collects data from smart meters and sensors in short time intervals, in response to utility needs. DA and AMI systems convergence provides unique opportunities and capabilities for distribution grid modernization with the DA system acting as a controller and AMI system acting as feedback to DA system, for which DA applications have to understand and use the AMI data selectively and effectively. In this paper, we propose a load segmentation method that helps the DA system to accurately understand and use the AMI data for various automation applications with a suitable case study on power restoration.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3734 ◽  
Author(s):  
Ricardo Siqueira de Carvalho ◽  
Pankaj Kumar Sen ◽  
Yaswanth Nag Velaga ◽  
Lucas Feksa Ramos ◽  
Luciane Neves Canha

This paper primarily deals with the design of an Information and Control Technology (ICT) network for an advanced metering infrastructure (AMI) on the IEEE 34 node radial distribution network. The application is comprised of 330 smart meters deployed in the low voltage system and 33 data concentrators in the medium voltage system. A power line carrier (PLC) communication system design is developed and simulated in Network Simulator 3 (NS-3). The simulation result is validated by comparing the communication network performance with the minimum performance requirements for AMI. The network delay of a single data frame is calculated and compared with the simulation delay. The design methodology proposed in this article may be used for other smart grid applications. The secondary goal is to provide AMI network traffic based on the IEC Std. 61968 and a discussion on whether or not AMI could possibly be a source of big data on the future power grid.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5986
Author(s):  
Mirosław Kornatka ◽  
Tomasz Popławski

In order to ensure continuous energy supply, Distribution System Operators (DSOs) have to monitor and analyze the condition of the power grid, especially checking for random events, such as breakdowns or other disturbances. Still, relatively little information is available on the operation of the Low Voltage (LV) grid. This can be improved thanks to digital tools, offering online processing of data, which ultimately increases effectiveness of the power grid. Among those tools, the use of the Advanced Metering Infrastructure (AMI) is especially conducive for improving reliability. AMI is one of the elements of the system Supervisory Control and Data Acquisition (SCADA) for the LV grid. Exact knowledge of the reliability conditions of a power grid is also indispensable for optimizing investment. AMI is also key in providing operational capacity for carrying out energy balance in virtual power plants (VPPs). This paper deals with methodology of identification and location of faults in the AMI-supervised LV grid and with calculating the System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) on the basis of the recorded events. The results presented in the paper are based on data obtained from seven MV/LV transformer stations that supply over 2000 customers.


Sign in / Sign up

Export Citation Format

Share Document