Gigascale integration (GSI) interconnect limits and n-tier multilevel interconnect architectural solutions (discussion session)

Author(s):  
Jeff A. Davis ◽  
Raguraman Venkatesan ◽  
Keith Bowman ◽  
James D. Meindl
1967 ◽  
Vol 28 ◽  
pp. 105-176
Author(s):  
Robert F. Christy

(Ed. note: The custom in these Symposia has been to have a summary-introductory presentation which lasts about 1 to 1.5 hours, during which discussion from the floor is minor and usually directed at technical clarification. The remainder of the session is then devoted to discussion of the whole subject, oriented around the summary-introduction. The preceding session, I-A, at Nice, followed this pattern. Christy suggested that we might experiment in his presentation with a much more informal approach, allowing considerable discussion of the points raised in the summary-introduction during its presentation, with perhaps the entire morning spent in this way, reserving the afternoon session for discussion only. At Varenna, in the Fourth Symposium, several of the summaryintroductory papers presented from the astronomical viewpoint had been so full of concepts unfamiliar to a number of the aerodynamicists-physicists present, that a major part of the following discussion session had been devoted to simply clarifying concepts and then repeating a considerable amount of what had been summarized. So, always looking for alternatives which help to increase the understanding between the different disciplines by introducing clarification of concept as expeditiously as possible, we tried Christy's suggestion. Thus you will find the pattern of the following different from that in session I-A. I am much indebted to Christy for extensive collaboration in editing the resulting combined presentation and discussion. As always, however, I have taken upon myself the responsibility for the final editing, and so all shortcomings are on my head.)


1955 ◽  
Vol 34 (4) ◽  
pp. 224
Author(s):  
F.C. Cooke ◽  
S. Radcliffe ◽  
H.A. Chambers ◽  
C. Bromage ◽  
Menelaus ◽  
...  

1997 ◽  
Vol 473 ◽  
Author(s):  
J. A. Davis ◽  
J. D. Meindl

ABSTRACTOpportunities for Gigascale Integration (GSI) are governed by a hierarchy of physical limits. The levels of this hierarchy have been codified as: 1) fundamental, 2) material, 3) device, 4) circuit and 5) system. Many key limits at all levels of the hierarchy can be displayed in the power, P, versus delay, td, plane and the reciprocal length squared, L-2, versus response time, τ, plane. Power, P, is the average power transfer during a binary switching transition and delay, td, is the time required for the transition. Length, L, is the distance traversed by an interconnect that joins two nodes on a chip and response time, τ, characterizes the corresponding interconnect circuit. At the system level of the hierarchy, quantitative definition of both the P versus td and the L-2 versus τ displays requires an estimate of the complete stochastic wiring distribution of a chip.Based on Rent's Rule, a well known empirical relationship between the number of signal input/output terminals on a block of logic and the number of gate circuits with the block, a rigorous derivation of a new complete stochastic wire length distribution for an on-chip random logic network is described. This distribution is compared to actual data for modern microprocessors and to previously described distributions. A methodology for estimating the complete wire length distribution for future GSI products is proposed. The new distribution is then used to enhance the critical path model that determines the maximum clock frequency of a chip; to derive a preliminary power dissipation model for a random logic network; and, to define an optimal architecture of a multilevel interconnect network that minimizes overall chip size. In essence, a new complete stochastic wiring distribution provides a generic basis for maximizing the value obtained from a multilevel interconnect technology.


Author(s):  
Kh.I. Bobodzhanova ◽  
Guillermo Mateos Budiño ◽  
Ricardo Amils ◽  
José Manuel Martínez Lozano ◽  
Sofía de Francisco de Polanco

Sign in / Sign up

Export Citation Format

Share Document