Effects of Tactile Textures on Preference in Visuo-Tactile Exploration
The use of haptic technologies has recently become immensely essential in Human-Computer Interaction to improve user experience and performance. With the introduction of tactile feedback on a touchscreen device, commonly known as surface haptics, several applications and interaction paradigms have become a reality. However, the effects of tactile feedback on the preference of 2D images in visuo-tactile exploration task on touchscreen devices remain largely unknown. In this study, we investigated differences of preference score (the tendency of participants to like/dislike a 2D image based on its visual and tactile properties), reach time, interaction time, and response time under four conditions of feedback: no tactile feedback, high-quality of tactile information (sharp tactile texture), low-quality of tactile information (blurred tactile texture), and incorrect tactile information (mismatch tactile texture). The tactile feedback is rendered in the form of roughness that is simulated by modulating the friction between the finger and the surface and is derived from the 2D image. Thirty-six participants completed visuo-tactile exploration tasks for a total of 36 trials (3 2D images × 4 tactile textures × 3 repetitions). Results showed that the presence of tactile feedback enhanced users’ preference (tactile feedback conditions were rated significantly higher than the no tactile feedback condition for preference regardless of the quality/correctness of tactile feedback). This finding is also supported through results from self-reporting where 88.89% of participants preferred to experience the 2D image with tactile feedback. Additionally, the presence of tactile feedback resulted in significantly larger interaction time and response time compared to the no tactile feedback condition. Furthermore, the quality and correctness of tactile information significantly impacted the preference rating (sharp tactile textures were rated statistically higher than blurred tactile and mismatched tactile textures). All of these findings demonstrate that tactile feedback plays a crucial role in users’ preference and thus motivates further the development of surface haptic technologies.