Knowledge-Guided Disentangled Representation Learning for Recommender Systems
In recommender systems, it is essential to understand the underlying factors that affect user-item interaction. Recently, several studies have utilized disentangled representation learning to discover such hidden factors from user-item interaction data, which shows promising results. However, without any external guidance signal, the learned disentangled representations lack clear meanings, and are easy to suffer from the data sparsity issue. In light of these challenges, we study how to leverage knowledge graph (KG) to guide the disentangled representation learning in recommender systems. The purpose for incorporating KG is twofold, making the disentangled representations interpretable and resolving data sparsity issue. However, it is not straightforward to incorporate KG for improving disentangled representations, because KG has very different data characteristics compared with user-item interactions. We propose a novel K nowledge-guided D isentangled R epresentations approach ( KDR ) to utilizing KG to guide the disentangled representation learning in recommender systems. The basic idea, is to first learn more interpretable disentangled dimensions (explicit disentangled representations) based on structural KG, and then align implicit disentangled representations learned from user-item interaction with the explicit disentangled representations. We design a novel alignment strategy based on mutual information maximization. It enables the KG information to guide the implicit disentangled representation learning, and such learned disentangled representations will correspond to semantic information derived from KG. Finally, the fused disentangled representations are optimized to improve the recommendation performance. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed model in terms of both performance and interpretability.