Knowledge-Guided Disentangled Representation Learning for Recommender Systems

2022 ◽  
Vol 40 (1) ◽  
pp. 1-26
Author(s):  
Shanlei Mu ◽  
Yaliang Li ◽  
Wayne Xin Zhao ◽  
Siqing Li ◽  
Ji-Rong Wen

In recommender systems, it is essential to understand the underlying factors that affect user-item interaction. Recently, several studies have utilized disentangled representation learning to discover such hidden factors from user-item interaction data, which shows promising results. However, without any external guidance signal, the learned disentangled representations lack clear meanings, and are easy to suffer from the data sparsity issue. In light of these challenges, we study how to leverage knowledge graph (KG) to guide the disentangled representation learning in recommender systems. The purpose for incorporating KG is twofold, making the disentangled representations interpretable and resolving data sparsity issue. However, it is not straightforward to incorporate KG for improving disentangled representations, because KG has very different data characteristics compared with user-item interactions. We propose a novel K nowledge-guided D isentangled R epresentations approach ( KDR ) to utilizing KG to guide the disentangled representation learning in recommender systems. The basic idea, is to first learn more interpretable disentangled dimensions (explicit disentangled representations) based on structural KG, and then align implicit disentangled representations learned from user-item interaction with the explicit disentangled representations. We design a novel alignment strategy based on mutual information maximization. It enables the KG information to guide the implicit disentangled representation learning, and such learned disentangled representations will correspond to semantic information derived from KG. Finally, the fused disentangled representations are optimized to improve the recommendation performance. Extensive experiments on three real-world datasets demonstrate the effectiveness of the proposed model in terms of both performance and interpretability.

Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 115
Author(s):  
Yongjun Jing ◽  
Hao Wang ◽  
Kun Shao ◽  
Xing Huo

Trust prediction is essential to enhancing reliability and reducing risk from the unreliable node, especially for online applications in open network environments. An essential fact in trust prediction is to measure the relation of both the interacting entities accurately. However, most of the existing methods infer the trust relation between interacting entities usually rely on modeling the similarity between nodes on a graph and ignore semantic relation and the influence of negative links (e.g., distrust relation). In this paper, we proposed a relation representation learning via signed graph mutual information maximization (called SGMIM). In SGMIM, we incorporate a translation model and positive point-wise mutual information to enhance the relation representations and adopt Mutual Information Maximization to align the entity and relation semantic spaces. Moreover, we further develop a sign prediction model for making accurate trust predictions. We conduct link sign prediction in trust networks based on learned the relation representation. Extensive experimental results in four real-world datasets on trust prediction task show that SGMIM significantly outperforms state-of-the-art baseline methods.


Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 206
Author(s):  
Louis Béthune ◽  
Yacouba Kaloga ◽  
Pierre Borgnat ◽  
Aurélien Garivier ◽  
Amaury Habrard

We propose a novel algorithm for unsupervised graph representation learning with attributed graphs. It combines three advantages addressing some current limitations of the literature: (i) The model is inductive: it can embed new graphs without re-training in the presence of new data; (ii) The method takes into account both micro-structures and macro-structures by looking at the attributed graphs at different scales; (iii) The model is end-to-end differentiable: it is a building block that can be plugged into deep learning pipelines and allows for back-propagation. We show that combining a coarsening method having strong theoretical guarantees with mutual information maximization suffices to produce high quality embeddings. We evaluate them on classification tasks with common benchmarks of the literature. We show that our algorithm is competitive with state of the art among unsupervised graph representation learning methods.


Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


Author(s):  
Wenqi Fan ◽  
Tyler Derr ◽  
Yao Ma ◽  
Jianping Wang ◽  
Jiliang Tang ◽  
...  

Recent years have witnessed rapid developments on social recommendation techniques for improving the performance of recommender systems due to the growing influence of social networks to our daily life. The majority of existing social recommendation methods unify user representation for the user-item interactions (item domain) and user-user connections (social domain). However, it may restrain user representation learning in each respective domain, since users behave and interact differently in the two domains, which makes their representations to be heterogeneous. In addition, most of traditional recommender systems can not efficiently optimize these objectives, since they utilize negative sampling technique which is unable to provide enough informative guidance towards the training during the optimization process. In this paper, to address the aforementioned challenges, we propose a novel deep adversarial social recommendation framework DASO. It adopts a bidirectional mapping method to transfer users' information between social domain and item domain using adversarial learning. Comprehensive experiments on two real-world datasets show the effectiveness of the proposed framework.


2018 ◽  
Vol 45 (5) ◽  
pp. 607-642 ◽  
Author(s):  
Sajad Ahmadian ◽  
Mohsen Afsharchi ◽  
Majid Meghdadi

Trust-aware recommender systems are advanced approaches which have been developed based on social information to provide relevant suggestions to users. These systems can alleviate cold start and data sparsity problems in recommendation methods through trust relations. However, the lack of sufficient trust information can reduce the efficiency of these methods. Moreover, diversity and novelty are important measures for providing more attractive suggestions to users. In this article, a reputation-based approach is proposed to improve trust-aware recommender systems by enhancing rating profiles of the users who have insufficient ratings and trust information. In particular, we use a user reliability measure to determine the effectiveness of the rating profiles and trust networks of users in predicting unseen items. Then, a novel user reputation model is introduced based on the combination of the rating profiles and trust networks. The main idea of the proposed method is to enhance the rating profiles of the users who have low user reliability measure by adding a number of virtual ratings. To this end, the proposed user reputation model is used to predict the virtual ratings. In addition, the diversity, novelty and reliability measures of items are considered in the proposed rating profile enhancement mechanism. Therefore, the proposed method can improve the recommender systems about the cold start and data sparsity problems and also the diversity, novelty and reliability measures. Experimental results based on three real-world datasets show that the proposed method achieves higher performance than other recommendation methods.


Author(s):  
Liang Hu ◽  
Songlei Jian ◽  
Longbing Cao ◽  
Zhiping Gu ◽  
Qingkui Chen ◽  
...  

Classic recommender systems face challenges in addressing the data sparsity and cold-start problems with only modeling the user-item relation. An essential direction is to incorporate and understand the additional heterogeneous relations, e.g., user-user and item-item relations, since each user-item interaction is often influenced by other users and items, which form the user’s/item’s influential contexts. This induces important yet challenging issues, including modeling heterogeneous relations, interactions, and the strength of the influence from users/items in the influential contexts. To this end, we design Influential-Context Aggregation Units (ICAU) to aggregate the user-user/item-item relations within a given context as the influential context embeddings. Accordingly, we propose a Heterogeneous relations-Embedded Recommender System (HERS) based on ICAUs to model and interpret the underlying motivation of user-item interactions by considering user-user and item-item influences. The experiments on two real-world datasets show the highly improved recommendation quality made by HERS and its superiority in handling the cold-start problem. In addition, we demonstrate the interpretability of modeling influential contexts in explaining the recommendation results.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Rui Chen ◽  
Qingyi Hua ◽  
Quanli Gao ◽  
Ying Xing

Recommender systems are recently becoming more significant in the age of rapid development of the information technology and pervasive computing to provide e-commerce users’ appropriate items. In recent years, various model-based and neighbor-based approaches have been proposed, which improve the accuracy of recommendation to some extent. However, these approaches are less accurate than expected when users’ ratings on items are very sparse in comparison with the huge number of users and items in the user-item rating matrix. Data sparsity and high dimensionality in recommender systems have negatively affected the performance of recommendation. To solve these problems, we propose a hybrid recommendation approach and framework using Gaussian mixture model and matrix factorization technology. Specifically, the improved cosine similarity formula is first used to get users’ neighbors, and initial ratings on unrated items are predicted. Second, users’ ratings on items are converted into users’ preferences on items’ attributes to reduce the problem of data sparsity. Again, the obtained user-item-attribute preference data is trained through the Gaussian mixture model to classify users with the same interests into the same group. Finally, an enhanced social matrix factorization method fusing user’s and item’s social relationships is proposed to predict the other unseen ratings. Extensive experiments on two real-world datasets are conducted and the results are compared with the existing major recommendation models. Experimental results demonstrate that the proposed method achieves the better performance compared to other techniques in accuracy.


Author(s):  
Yunhui Guo ◽  
Congfu Xu ◽  
Hanzhang Song ◽  
Xin Wang

People consume and rate products in online shopping websites. The historical purchases of customers reflect their personal consumption habits and indicate their future shopping behaviors. Traditional preference-based recommender systems try to provide recommendations by analyzing users' feedback such as ratings and clicks. But unfortunately, most of the existing recommendation algorithms ignore the budget of the users. So they cannot avoid recommending users with products that will exceed their budgets. And they also cannot understand how the users will assign their budgets to different products. In this paper, we develop a generative model named collaborative budget-aware Poisson factorization (CBPF) to connect users' ratings and budgets. The CBPF model is intuitive and highly interpretable. We compare the proposed model with several state-of-the-art budget-unaware recommendation methods on several real-world datasets. The results show the advantage of uncovering users' budgets for recommendation.


Sign in / Sign up

Export Citation Format

Share Document