trust prediction
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 2 (4) ◽  
pp. 401-417
Author(s):  
Seyed M. Ghafari ◽  
Amin Beheshti ◽  
Aditya Joshi ◽  
Cecile Paris ◽  
Shahpar Yakhchi ◽  
...  

Trust among users in online social networks is a key factor in determining the amount of information that is perceived as reliable. Compared to the number of users in online social networks, user-specified trust relations are very sparse. This makes the pair-wise trust prediction a challenging task. Social studies have investigated trust and why people trust each other. The relation between trust and personality traits of people who established those relations, has been proved by social theories. In this work, we attempt to alleviate the effect of the sparsity of trust relations by extracting implicit information from the users, in particular, by focusing on users' personality traits and seeking a low-rank representation of users. We investigate the potential impact on the prediction of trust relations, by incorporating users' personality traits based on the Big Five factor personality model. We evaluate the impact of similarities of users' personality traits and the effect of each personality trait on pair-wise trust relations. Next, we formulate a new unsupervised trust prediction model based on tensor decomposition. Finally, we empirically evaluate this model using two real-world datasets. Our extensive experiments confirm the superior performance of our model compared to the state-of-the-art approaches.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1259
Author(s):  
Muhammad Shehram Shah Syed ◽  
Elena Pirogova ◽  
Margaret Lech

This paper explores the automatic prediction of public trust in politicians through the use of speech, text, and visual modalities. It evaluates the effectiveness of each modality individually, and it investigates fusion approaches for integrating information from each modality for prediction using a multimodal setting. A database was created consisting of speech recordings, twitter messages, and images representing fifteen American politicians, and labeling was carried out per a publicly available ranking system. The data were distributed into three trust categories, i.e., the low-trust category, mid-trust category, and high-trust category. First, unimodal prediction using each of the three modalities individually was performed using the database; then, using the outputs of the unimodal predictions, a multimodal prediction was later performed. Unimodal prediction was performed by training three independent logistic regression (LR) classifiers, one each for speech, text, and images. The prediction vectors from the individual modalities were then concatenated before being used to train a multimodal decision-making LR classifier. We report that the best performing modality was speech, which achieved a classification accuracy of 92.81%, followed by the images, achieving an accuracy of 77.96%, whereas the best performing model for text-modality achieved a 72.26% accuracy. With the multimodal approach, the highest classification accuracy of 97.53% was obtained when all three modalities were used for trust prediction. Meanwhile, in a bimodal setup, the best performing combination was that combining the speech and image visual modalities by achieving an accuracy of 95.07%, followed by the speech and text combination, showing an accuracy of 94.40%, whereas the text and images visual modal combination resulted in an accuracy of 83.20%.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-30
Author(s):  
Xiaofeng Gao ◽  
Wenyi Xu ◽  
Mingding Liao ◽  
Guihai Chen

Online social networks gain increasing popularity in recent years. In online social networks, trust prediction is significant for recommendations of high reputation users as well as in many other applications. In the literature, trust prediction problem can be solved by several strategies, such as matrix factorization, trust propagation, and -NN search. However, most of the existing works have not considered the possible complementarity among these mainstream strategies to optimize their effectiveness and efficiency. In this article, we propose a novel trust prediction approach named iSim : an integrated time-aware similarity-based collaborative filtering approach leveraging on user similarity, which integrates three kinds of factors to measure user similarity, including vector space similarity, time-aware matrix factorization, and propagated trust. This article is the first work in the literature employing time-aware matrix factorization and propagated trust in the study of similarity. Additionally, we use several methods like adding inverted index to reduce the time complexity of iSim , and provide its theoretical time bound. Moreover, we also provide the detailed overview and theoretical analysis of the existing works. Finally, the extensive experiments with real-world datasets show that iSim achieves great improvement for both efficiency and effectiveness over the state-of-the-art approaches.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 115
Author(s):  
Yongjun Jing ◽  
Hao Wang ◽  
Kun Shao ◽  
Xing Huo

Trust prediction is essential to enhancing reliability and reducing risk from the unreliable node, especially for online applications in open network environments. An essential fact in trust prediction is to measure the relation of both the interacting entities accurately. However, most of the existing methods infer the trust relation between interacting entities usually rely on modeling the similarity between nodes on a graph and ignore semantic relation and the influence of negative links (e.g., distrust relation). In this paper, we proposed a relation representation learning via signed graph mutual information maximization (called SGMIM). In SGMIM, we incorporate a translation model and positive point-wise mutual information to enhance the relation representations and adopt Mutual Information Maximization to align the entity and relation semantic spaces. Moreover, we further develop a sign prediction model for making accurate trust predictions. We conduct link sign prediction in trust networks based on learned the relation representation. Extensive experimental results in four real-world datasets on trust prediction task show that SGMIM significantly outperforms state-of-the-art baseline methods.


Sign in / Sign up

Export Citation Format

Share Document