Attention-based Unsupervised Keyphrase Extraction and Phrase Graph for COVID-19 Medical Literature Retrieval

2022 ◽  
Vol 3 (1) ◽  
pp. 1-16
Author(s):  
Haoran Ding ◽  
Xiao Luo

Searching, reading, and finding information from the massive medical text collections are challenging. A typical biomedical search engine is not feasible to navigate each article to find critical information or keyphrases. Moreover, few tools provide a visualization of the relevant phrases to the query. However, there is a need to extract the keyphrases from each document for indexing and efficient search. The transformer-based neural networks—BERT has been used for various natural language processing tasks. The built-in self-attention mechanism can capture the associations between words and phrases in a sentence. This research investigates whether the self-attentions can be utilized to extract keyphrases from a document in an unsupervised manner and identify relevancy between phrases to construct a query relevancy phrase graph to visualize the search corpus phrases on their relevancy and importance. The comparison with six baseline methods shows that the self-attention-based unsupervised keyphrase extraction works well on a medical literature dataset. This unsupervised keyphrase extraction model can also be applied to other text data. The query relevancy graph model is applied to the COVID-19 literature dataset and to demonstrate that the attention-based phrase graph can successfully identify the medical phrases relevant to the query terms.

2021 ◽  
Vol 11 (7) ◽  
pp. 3184
Author(s):  
Ismael Garrido-Muñoz  ◽  
Arturo Montejo-Ráez  ◽  
Fernando Martínez-Santiago  ◽  
L. Alfonso Ureña-López 

Deep neural networks are hegemonic approaches to many machine learning areas, including natural language processing (NLP). Thanks to the availability of large corpora collections and the capability of deep architectures to shape internal language mechanisms in self-supervised learning processes (also known as “pre-training”), versatile and performing models are released continuously for every new network design. These networks, somehow, learn a probability distribution of words and relations across the training collection used, inheriting the potential flaws, inconsistencies and biases contained in such a collection. As pre-trained models have been found to be very useful approaches to transfer learning, dealing with bias has become a relevant issue in this new scenario. We introduce bias in a formal way and explore how it has been treated in several networks, in terms of detection and correction. In addition, available resources are identified and a strategy to deal with bias in deep NLP is proposed.


2017 ◽  
Vol 56 (05) ◽  
pp. 377-389 ◽  
Author(s):  
Xingyu Zhang ◽  
Joyce Kim ◽  
Rachel E. Patzer ◽  
Stephen R. Pitts ◽  
Aaron Patzer ◽  
...  

SummaryObjective: To describe and compare logistic regression and neural network modeling strategies to predict hospital admission or transfer following initial presentation to Emergency Department (ED) triage with and without the addition of natural language processing elements.Methods: Using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a cross-sectional probability sample of United States EDs from 2012 and 2013 survey years, we developed several predictive models with the outcome being admission to the hospital or transfer vs. discharge home. We included patient characteristics immediately available after the patient has presented to the ED and undergone a triage process. We used this information to construct logistic regression (LR) and multilayer neural network models (MLNN) which included natural language processing (NLP) and principal component analysis from the patient’s reason for visit. Ten-fold cross validation was used to test the predictive capacity of each model and receiver operating curves (AUC) were then calculated for each model.Results: Of the 47,200 ED visits from 642 hospitals, 6,335 (13.42%) resulted in hospital admission (or transfer). A total of 48 principal components were extracted by NLP from the reason for visit fields, which explained 75% of the overall variance for hospitalization. In the model including only structured variables, the AUC was 0.824 (95% CI 0.818-0.830) for logistic regression and 0.823 (95% CI 0.817-0.829) for MLNN. Models including only free-text information generated AUC of 0.742 (95% CI 0.7310.753) for logistic regression and 0.753 (95% CI 0.742-0.764) for MLNN. When both structured variables and free text variables were included, the AUC reached 0.846 (95% CI 0.839-0.853) for logistic regression and 0.844 (95% CI 0.836-0.852) for MLNN.Conclusions: The predictive accuracy of hospital admission or transfer for patients who presented to ED triage overall was good, and was improved with the inclusion of free text data from a patient’s reason for visit regardless of modeling approach. Natural language processing and neural networks that incorporate patient-reported outcome free text may increase predictive accuracy for hospital admission.


2020 ◽  
Vol 11 (2) ◽  
pp. 41-47
Author(s):  
Amandeep Kaur ◽  
Madhu Dhiman ◽  
Mansi Tonk ◽  
Ramneet Kaur

Artificial Intelligence is the combination of machine and human intelligence, which are in research trends from the last many years. Different Artificial Intelligence programs have become capable of challenging humans by providing Expert Systems, Neural Networks, Robotics, Natural Language Processing, Face Recognition and Speech Recognition. Artificial Intelligence brings a bright future for different technical inventions in various fields. This review paper shows the general concept of Artificial Intelligence and presents an impact of Artificial Intelligence in the present and future world.


2020 ◽  
Author(s):  
David DeFranza ◽  
Himanshu Mishra ◽  
Arul Mishra

Language provides an ever-present context for our cognitions and has the ability to shape them. Languages across the world can be gendered (language in which the form of noun, verb, or pronoun is presented as female or male) versus genderless. In an ongoing debate, one stream of research suggests that gendered languages are more likely to display gender prejudice than genderless languages. However, another stream of research suggests that language does not have the ability to shape gender prejudice. In this research, we contribute to the debate by using a Natural Language Processing (NLP) method which captures the meaning of a word from the context in which it occurs. Using text data from Wikipedia and the Common Crawl project (which contains text from billions of publicly facing websites) across 45 world languages, covering the majority of the world’s population, we test for gender prejudice in gendered and genderless languages. We find that gender prejudice occurs more in gendered rather than genderless languages. Moreover, we examine whether genderedness of language influences the stereotypic dimensions of warmth and competence utilizing the same NLP method.


Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Sentiment Analysis. In particular, we target three sub-tasks namely sentiment words extraction, polarity of sentiment words detection, and text sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. Vector representations has been used to compute various vector-based features and conduct systematically experiments to demonstrate their effectiveness. Using simple vector based features can achieve better results for text sentiment analysis of APP.


Author(s):  
Ayush Srivastav ◽  
Hera Khan ◽  
Amit Kumar Mishra

The chapter provides an eloquent account of the major methodologies and advances in the field of Natural Language Processing. The most popular models that have been used over time for the task of Natural Language Processing have been discussed along with their applications in their specific tasks. The chapter begins with the fundamental concepts of regex and tokenization. It provides an insight to text preprocessing and its methodologies such as Stemming and Lemmatization, Stop Word Removal, followed by Part-of-Speech tagging and Named Entity Recognition. Further, this chapter elaborates the concept of Word Embedding, its various types, and some common frameworks such as word2vec, GloVe, and fastText. A brief description of classification algorithms used in Natural Language Processing is provided next, followed by Neural Networks and its advanced forms such as Recursive Neural Networks and Seq2seq models that are used in Computational Linguistics. A brief description of chatbots and Memory Networks concludes the chapter.


Author(s):  
Katie Miller

The challenge presented is an age when some decisions are made by humans, some are made by AI, and some are made by a combination of AI and humans. For the person refused housing, a phone service, or employment, the experience is the same, but the ability to understand what has happened and obtain a remedy may be very different if the discrimination is attributable to or contributed by an AI system. If we are to preserve the policy intentions of our discrimination, equal opportunity, and human rights laws, we need to understand how discrimination arises in AI systems; how design in AI systems can mitigate such discrimination; and whether our existing laws are adequate to address discrimination in AI. This chapter endeavours to provide this understanding. In doing so, it focuses on narrow but advanced forms of artificial intelligence, such as natural language processing, facial recognition, and cognitive neural networks.


Sign in / Sign up

Export Citation Format

Share Document