MeF-RAM: A New Non-Volatile Cache Memory Based on Magneto-Electric FET

2022 ◽  
Vol 27 (2) ◽  
pp. 1-18
Author(s):  
Shaahin Angizi ◽  
Navid Khoshavi ◽  
Andrew Marshall ◽  
Peter Dowben ◽  
Deliang Fan

Magneto-Electric FET ( MEFET ) is a recently developed post-CMOS FET, which offers intriguing characteristics for high-speed and low-power design in both logic and memory applications. In this article, we present MeF-RAM , a non-volatile cache memory design based on 2-Transistor-1-MEFET ( 2T1M ) memory bit-cell with separate read and write paths. We show that with proper co-design across MEFET device, memory cell circuit, and array architecture, MeF-RAM is a promising candidate for fast non-volatile memory ( NVM ). To evaluate its cache performance in the memory system, we, for the first time, build a device-to-architecture cross-layer evaluation framework to quantitatively analyze and benchmark the MeF-RAM design with other memory technologies, including both volatile memory (i.e., SRAM, eDRAM) and other popular non-volatile emerging memory (i.e., ReRAM, STT-MRAM, and SOT-MRAM). The experiment results for the PARSEC benchmark suite indicate that, as an L2 cache memory, MeF-RAM reduces Energy Area Latency ( EAT ) product on average by ~98% and ~70% compared with typical 6T-SRAM and 2T1R SOT-MRAM counterparts, respectively.

2018 ◽  
Vol 11 (02) ◽  
pp. 1850023 ◽  
Author(s):  
Pingping Zheng ◽  
Xuejiao Zhang ◽  
Bai Sun ◽  
Shuangsuo Mao ◽  
Shouhui Zhu ◽  
...  

In this paper, the Cu2ZnSnSe4 (CZTSe) film was deposited on the fluorine-doped SnO2 (FTO), and Al-doped ZnO (AZO) and FTO act as top and bottom electrodes for constructing a sandwich structure, in which the AZO/CZTSe/FTO device not only represents outstanding non-volatile resistive switching memory behavior, but also shows a persistently increasing resistance ratio phenomenon for the first time. This work reveals that the device based on CZTSe film holds an excellent memory effect for non-volatile memory applications in the electronic equipment.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 301
Author(s):  
Young Jin Choi ◽  
Jihyun Kim ◽  
Min Je Kim ◽  
Hwa Sook Ryu ◽  
Han Young Woo ◽  
...  

Donor–acceptor-type organic semiconductor molecules are of great interest for potential organic field-effect transistor applications with ambipolar characteristics and non-volatile memory applications. Here, we synthesized an organic semiconductor, PDPPT-TT, and directly utilized it in both field-effect transistor and non-volatile memory applications. As-synthesized PDPPT-TT was simply spin-coated on a substrate for the device fabrications. The PDPPT-TT based field-effect transistor showed ambipolar electrical transfer characteristics. Furthermore, a gold nanoparticle-embedded dielectric layer was used as a charge trapping layer for the non-volatile memory device applications. The non-volatile memory device showed clear memory window formation as applied gate voltage increases, and electrical stability was evaluated by performing retention and cycling tests. In summary, we demonstrate that a donor–acceptor-type organic semiconductor molecule shows great potential for ambipolar field-effect transistors and non-volatile memory device applications as an important class of materials.


2016 ◽  
Vol 4 (46) ◽  
pp. 10967-10972 ◽  
Author(s):  
Sujaya Kumar Vishwanath ◽  
Jihoon Kim

The all-solution-based memory devices demonstrated excellent bipolar switching behavior with a high resistive switching ratio of 103, excellent endurance of more than 1000 cycles, stable retention time greater than 104s at elevated temperatures, and fast programming speed of 250 ns.


1998 ◽  
Vol 19 (1-4) ◽  
pp. 159-177 ◽  
Author(s):  
S. Aggarwal ◽  
A. S. Prakash ◽  
T. K. Song ◽  
S. Sadashivan ◽  
A. M. Dhote ◽  
...  

2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040001
Author(s):  
N. R. Butterfield ◽  
R. Mays ◽  
B. Khan ◽  
R. Gudlavalleti ◽  
F. C. Jain

This paper presents the theory, fabrication and experimental testing results for a multiple state Non-Volatile Memory (NVM), comprised of hafnium oxide high-k dielectric tunnel and gate barriers as well as a Silicon Quantum Dot Superlattice (QDSL) implemented for the floating gate and inversion channel (QDG) and (QDC) respectively. With the conclusion of Moore’s Law for conventional transistor fabrication, regarding the minimum gate size, current efforts in memory cell research and development are focused on bridging the gap between the conventions of the past sixty years and the future of computing. One method of continuing the increasing chip density is to create multistate devices capable of storing and processing additional logic states beyond 1 and 0. Replacing the silicon nitride floating gate of a conventional Flash NVM with QDSL gives rise to minibands that result in greater control over charge levels stored in the QDG and additional intermediate states. Utilizing Hot Carrier Injection (HCI) programming, for the realized device, various magnitudes of gate voltage pulses demonstrated the ability to accurately control the charge levels stored in the QDG. This corresponds to multiple threshold voltage shifts allowing detection of multiple states during read operations.


2021 ◽  
Vol 17 (3) ◽  
pp. 1-25
Author(s):  
Bohong Zhu ◽  
Youmin Chen ◽  
Qing Wang ◽  
Youyou Lu ◽  
Jiwu Shu

Non-volatile memory and remote direct memory access (RDMA) provide extremely high performance in storage and network hardware. However, existing distributed file systems strictly isolate file system and network layers, and the heavy layered software designs leave high-speed hardware under-exploited. In this article, we propose an RDMA-enabled distributed persistent memory file system, Octopus + , to redesign file system internal mechanisms by closely coupling non-volatile memory and RDMA features. For data operations, Octopus + directly accesses a shared persistent memory pool to reduce memory copying overhead, and actively fetches and pushes data all in clients to rebalance the load between the server and network. For metadata operations, Octopus + introduces self-identified remote procedure calls for immediate notification between file systems and networking, and an efficient distributed transaction mechanism for consistency. Octopus + is enabled with replication feature to provide better availability. Evaluations on Intel Optane DC Persistent Memory Modules show that Octopus + achieves nearly the raw bandwidth for large I/Os and orders of magnitude better performance than existing distributed file systems.


Sign in / Sign up

Export Citation Format

Share Document