scholarly journals Layered and object-based game semantics

2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-32
Author(s):  
Arthur Oliveira Vale ◽  
Paul-André Melliès ◽  
Zhong Shao ◽  
Jérémie Koenig ◽  
Léo Stefanesco

Large-scale software verification relies critically on the use of compositional languages, semantic models, specifications, and verification techniques. Recent work on certified abstraction layers synthesizes game semantics, the refinement calculus, and algebraic effects to enable the composition of heterogeneous components into larger certified systems. However, in existing models of certified abstraction layers, compositionality is restricted by the lack of encapsulation of state. In this paper, we present a novel game model for certified abstraction layers where the semantics of layer interfaces and implementations are defined solely based on their observable behaviors. Our key idea is to leverage Reddy's pioneer work on modeling the semantics of imperative languages not as functions on global states but as objects with their observable behaviors. We show that a layer interface can be modeled as an object type (i.e., a layer signature) plus an object strategy. A layer implementation is then essentially a regular map, in the sense of Reddy, from an object with the underlay signature to that with the overlay signature. A layer implementation is certified when its composition with the underlay object strategy implements the overlay object strategy. We also describe an extension that allows for non-determinism in layer interfaces. After formulating layer implementations as regular maps between object spaces, we move to concurrency and design a notion of concurrent object space, where sequential traces may be identified modulo permutation of independent operations. We show how to express protected shared object concurrency, and a ticket lock implementation, in a simple model based on regular maps between concurrent object spaces.

2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2019 ◽  
Vol 12 (1) ◽  
pp. 96 ◽  
Author(s):  
James Brinkhoff ◽  
Justin Vardanega ◽  
Andrew J. Robson

Land cover mapping of intensive cropping areas facilitates an enhanced regional response to biosecurity threats and to natural disasters such as drought and flooding. Such maps also provide information for natural resource planning and analysis of the temporal and spatial trends in crop distribution and gross production. In this work, 10 meter resolution land cover maps were generated over a 6200 km2 area of the Riverina region in New South Wales (NSW), Australia, with a focus on locating the most important perennial crops in the region. The maps discriminated between 12 classes, including nine perennial crop classes. A satellite image time series (SITS) of freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery was used. A segmentation technique grouped spectrally similar adjacent pixels together, to enable object-based image analysis (OBIA). K-means unsupervised clustering was used to filter training points and classify some map areas, which improved supervised classification of the remaining areas. The support vector machine (SVM) supervised classifier with radial basis function (RBF) kernel gave the best results among several algorithms trialled. The accuracies of maps generated using several combinations of the multispectral and radar bands were compared to assess the relative value of each combination. An object-based post classification refinement step was developed, enabling optimization of the tradeoff between producers’ accuracy and users’ accuracy. Accuracy was assessed against randomly sampled segments, and the final map achieved an overall count-based accuracy of 84.8% and area-weighted accuracy of 90.9%. Producers’ accuracies for the perennial crop classes ranged from 78 to 100%, and users’ accuracies ranged from 63 to 100%. This work develops methods to generate detailed and large-scale maps that accurately discriminate between many perennial crops and can be updated frequently.


Author(s):  
Alexander Miropolsky ◽  
Anath Fischer

The inspection of machined objects is one of the most important quality control tasks in the manufacturing industry. Contemporary scanning technologies have provided the impetus for the development of computational inspection methods, where the computer model of the manufactured object is reconstructed from the scan data, and then verified against its digital design model. Scan data, however, are typically very large scale (i.e., many points), unorganized, noisy, and incomplete. Therefore, reconstruction is problematic. To overcome the above problems the reconstruction methods may exploit diverse feature data, that is, diverse information about the properties of the scanned object. Based on this concept, the paper proposes a new method for denoising and reduction in scan data by extended geometric filter. The proposed method is applied directly on the scanned points and is automatic, fast, and straightforward to implement. The paper demonstrates the integration of the proposed method into the framework of the computational inspection process.


2021 ◽  
Author(s):  
Béla Kovács ◽  
Márton Pál ◽  
Fanni Vörös

<p>The use of aerial photography in topography has started in the first decades of the 20<sup>th</sup> century. Remote sensed data have become indispensable for cartographers and GIS staff when doing large-scale mapping: especially topographic, orienteering and thematic maps. The use of UAVs (unmanned aerial vehicles) for this purpose has also become widespread for some years. Various drones and sensors (RGB, multispectral and hyperspectral) with many specifications are used to capture and process the physical properties of an examined area. In parallel with the development of the hardware, new software solutions are emerging to visualize and analyse photogrammetric material: a large set of algorithms with different approaches are available for image processing.</p><p>Our study focuses on the large-scale topographic mapping of vegetation and land cover. Most traditional analogue and digital maps use these layers either for background or highlighted thematic purposes. We propose to use the theory of OBIA – Object-based Image Analysis to differentiate cover types. This method involves pixels to be grouped into larger polygon units based on either spectral or other variables (e.g. elevation, aspect, curvature in case of DEMs). The neighbours of initial seed points are examined whether they should be added to the region according to the similarity of their attributes. Using OBIA, different land cover types (trees, grass, soils, bare rock surfaces) can be distinguished either with supervised or unsupervised classification – depending on the purposes of the analyst. Our base data were high-resolution RGB and multispectral images (with 5 bands).</p><p>Following this methodology, not only elevation data (e.g. shaded relief or vector contour lines) can be derived from UAV imagery but vector land cover data are available for cartographers and GIS analysts. As the number of distinct land cover groups is free to choose, even quite complex thematic layers can be produced. These layers can serve as subjects of further analyses or for cartographic visualization.</p><p> </p><p>BK is supported by Application Domain Specific Highly Reliable IT Solutions” project  has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.</p><p>MP and FV are supported by EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control Technologies – The Project is financed by the Hungarian Government and co-financed by the European Social Fund.</p>


Author(s):  
A. Nithya ◽  
R. Kayalvizhi

The main purpose of this research is to improve the accuracy of object segmentation in database images by constructing an object segmentation algorithm. Image segmentation is a crucial step in the field of image processing and pattern recognition. Segmentation allows the identification of structures in an image which can be utilized for further processing. Both region-based and object-based segmentation are utilized for large-scale database images in a robust and principled manner. Gradient based MultiScalE Graylevel mOrphological recoNstructions (G-SEGON) is used for segmenting an image. SEGON roughly identifies the background and object regions in the image. This proposed method comprises of four phases namely pre-processing phase, object identification phase, object region segmentation phase, majority selection and refinement phase. After developing the grey level mesh the resultant image is converted into gradient and K-means clustering segmentation algorithm is used to segment the object from the gradient image. After implementation the accuracy of the proposed G-SEGON technique is compared with the existing method to prove its efficiency.


2018 ◽  
Vol 47 (3) ◽  
pp. 248-259 ◽  
Author(s):  
Łukasz Janowski ◽  
Jarosław Tęgowski ◽  
Jarosław Nowak

Abstract Seafloor mapping is a fast developing multidisciplinary branch of oceanology that combines geophysics, geostatistics, sedimentology and ecology. One of its objectives is to isolate distinct seabed features in a repeatable, fast and objective way, taking into consideration multibeam echosounder (MBES) bathymetry and backscatter data. A large-scale acoustic survey was conducted by the Maritime Institute in Gdańsk in 2010 using Reson 8125 MBES. The dataset covered over 20 km2 of a shallow seabed area (depth of up to 22 m) in the Polish Exclusive Economic Zone within the Southern Baltic. Determination of sediments was possible based on ground-truth grab samples acquired during the MBES survey. Four classes of sediments were recognized as muddy sand, very fine sand, fine sand and clay. The backscatter mosaic created using the Angular Variable Gain (AVG) empirical method was the primary contribution to the image processing method used in this study. The use of the Object-Based Image Analysis (OBIA) and the Classification and Regression Trees (CART) classifier makes it possible to isolate the backscatter image with 87.5% overall and 81.0% Kappa accuracy. The obtained results confirm the possibility of creating reliable maps of the seafloor based on MBES measurements. Once developed, the OBIA workflow can be applied to other spatial and temporal scenes.


2022 ◽  
Vol 44 (1) ◽  
pp. 1-50
Author(s):  
Omar Inverso ◽  
Ermenegildo Tomasco ◽  
Bernd Fischer ◽  
Salvatore La Torre ◽  
Gennaro Parlato

Bounded verification techniques such as bounded model checking (BMC) have successfully been used for many practical program analysis problems, but concurrency still poses a challenge. Here, we describe a new approach to BMC of sequentially consistent imperative programs that use POSIX threads. We first translate the multi-threaded program into a nondeterministic sequential program that preserves reachability for all round-robin schedules with a given bound on the number of rounds. We then reuse existing high-performance BMC tools as backends for the sequential verification problem. Our translation is carefully designed to introduce very small memory overheads and very few sources of nondeterminism, so it produces tight SAT/SMT formulae, and is thus very effective in practice: Our Lazy-CSeq tool implementing this translation for the C programming language won several gold and silver medals in the concurrency category of the Software Verification Competitions (SV-COMP) 2014–2021 and was able to find errors in programs where all other techniques (including testing) failed. In this article, we give a detailed description of our translation and prove its correctness, sketch its implementation using the CSeq framework, and report on a detailed evaluation and comparison of our approach.


Author(s):  
Alexander Miropolsky ◽  
Anath Fischer

Inspection of machined objects is one of the most important quality control tasks in the manufacturing industry. Contemporary scanning technologies have provided the impetus for the development of computational inspection methods, where the computer model of the manufactured object is reconstructed from the scan data, and then verified against its design computer model. Scan data, however, is typically very large scale (i.e. many points), unorganized, noisy and incomplete. Therefore, reconstruction is problematic. To overcome the above problems the reconstruction methods may exploit diverse feature data, that is, diverse information about the properties of the scanned object. Based on this concept, the paper proposes a new method for de-noising and reduction of scan data by Extended Geometric Filter (EGF). The proposed method is applied directly on the scanned points and is automatic, fast and straightforward to implement. The paper demonstrates the integration of the proposed method into the framework of the computational inspection process.


2018 ◽  
Vol 11 (1) ◽  
pp. 43 ◽  
Author(s):  
Masoud Mahdianpari ◽  
Bahram Salehi ◽  
Fariba Mohammadimanesh ◽  
Saeid Homayouni ◽  
Eric Gill

Wetlands are one of the most important ecosystems that provide a desirable habitat for a great variety of flora and fauna. Wetland mapping and modeling using Earth Observation (EO) data are essential for natural resource management at both regional and national levels. However, accurate wetland mapping is challenging, especially on a large scale, given their heterogeneous and fragmented landscape, as well as the spectral similarity of differing wetland classes. Currently, precise, consistent, and comprehensive wetland inventories on a national- or provincial-scale are lacking globally, with most studies focused on the generation of local-scale maps from limited remote sensing data. Leveraging the Google Earth Engine (GEE) computational power and the availability of high spatial resolution remote sensing data collected by Copernicus Sentinels, this study introduces the first detailed, provincial-scale wetland inventory map of one of the richest Canadian provinces in terms of wetland extent. In particular, multi-year summer Synthetic Aperture Radar (SAR) Sentinel-1 and optical Sentinel-2 data composites were used to identify the spatial distribution of five wetland and three non-wetland classes on the Island of Newfoundland, covering an approximate area of 106,000 km2. The classification results were evaluated using both pixel-based and object-based random forest (RF) classifications implemented on the GEE platform. The results revealed the superiority of the object-based approach relative to the pixel-based classification for wetland mapping. Although the classification using multi-year optical data was more accurate compared to that of SAR, the inclusion of both types of data significantly improved the classification accuracies of wetland classes. In particular, an overall accuracy of 88.37% and a Kappa coefficient of 0.85 were achieved with the multi-year summer SAR/optical composite using an object-based RF classification, wherein all wetland and non-wetland classes were correctly identified with accuracies beyond 70% and 90%, respectively. The results suggest a paradigm-shift from standard static products and approaches toward generating more dynamic, on-demand, large-scale wetland coverage maps through advanced cloud computing resources that simplify access to and processing of the “Geo Big Data.” In addition, the resulting ever-demanding inventory map of Newfoundland is of great interest to and can be used by many stakeholders, including federal and provincial governments, municipalities, NGOs, and environmental consultants to name a few.


Sign in / Sign up

Export Citation Format

Share Document