urban mapping
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 26)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Vol 18 (21) ◽  
pp. 38
Author(s):  
Adhwa Amir Tan ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Nur Shafira Nisa Shaharum

Sentinel-2A remote sensing satellite system was recently launched, providing free global remote sensing data similar to Landsat systems. Although the mission enables the acquisition of 10 m spatial resolution global data, the assessment of Sentinel-2A data performance for mapping in Malaysia is still limited. This study aimed to investigate and assess the capability of Sentinel-2A imagery in mapping urban areas in Malaysia by comparing its performance against the established Landsat-8 data as well as the fusion datasets from combining Landsat-8 and Sentinel-2A datasets and using Wavelet transform (WT), Brovey transform (BT) and principal component analysis. Pixel-based and object-based image analysis (OBIA) classification approaches combined with support vector machine (SVM) and decision tree (DT) algorithms were utilized in this assessment, and the accuracy generated was analysed. The Sentinel-2A data provided superior urban mapping output over the use of Landsat-8 alone, and the fusion datasets do not yield advantages for single-scene urban mapping. The highest overall accuracy (OA) for pixel-based classification of Sentinel-2A images is 84.77 % by SVM, followed by 65.27 % using DT. BT produced the highest OA for the fusion images of 78.40 % with SVM and 52.21 % with DT. For the object-based classification of Sentinel-2A images, the highest OA is 71.33 % by SVM, followed by 76.38 % using DT. Similarly, the highest OA of fusion images is obtained by BT of 50.35 % with SVM, followed by 65.66 % with DT. From the analysis, the use of SVM pixel-based classification for medium spatial resolution Sentinel-2A data is effective for urban mapping in Malaysia and useful for future long-term mapping applications. HIGHLIGHTS An accurate mapping of urban land is still challenging and requires high image quality of spectral and spatial aspects to identify features Single and fusion image analysis conducted in order to investigate and assess the most performing interpretation result by grouping out the features classes Statistical performance and image classification comparison is relevant to prove the most effective result among the images GRAPHICAL ABSTRACT


2021 ◽  
Vol 13 (8) ◽  
pp. 1523
Author(s):  
Yang Shao ◽  
Austin J. Cooner ◽  
Stephen J. Walsh

High-spatial-resolution satellite imagery has been widely applied for detailed urban mapping. Recently, deep convolutional neural networks (DCNNs) have shown promise in certain remote sensing applications, but they are still relatively new techniques for general urban mapping. This study examines the use of two DCNNs (U-Net and VGG16) to provide an automatic schema to support high-resolution mapping of buildings, road/open built-up, and vegetation cover. Using WorldView-2 imagery as input, we first applied an established OBIA method to characterize major urban land cover classes. An OBIA-derived urban map was then divided into a training and testing region to evaluate the DCNNs’ performance. For U-Net mapping, we were particularly interested in how sample size or the number of image tiles affect mapping accuracy. U-Net generated cross-validation accuracies ranging from 40.5 to 95.2% for training sample sizes from 32 to 4096 image tiles (each tile was 256 by 256 pixels). A per-pixel accuracy assessment led to 87.8 percent overall accuracy for the testing region, suggesting U-Net’s good generalization capabilities. For the VGG16 mapping, we proposed an object-based framing paradigm that retains spatial information and assists machine perception through Gaussian blurring. Gaussian blurring was used as a pre-processing step to enhance the contrast between objects of interest and background (contextual) information. Combined with the pre-trained VGG16 and transfer learning, this analytical approach generated a 77.3 percent overall accuracy for per-object assessment. The mapping accuracy could be further improved given more robust segmentation algorithms and better quantity/quality of training samples. Our study shows significant promise for DCNN implementation for urban mapping and our approach can transfer to a number of other remote sensing applications.


Author(s):  
Sumandeep Sandhu ◽  
Kshama Gupta ◽  
Shweta Khatriker ◽  
Ashutosh Bhardwaj ◽  
Pramod Kumar
Keyword(s):  

2021 ◽  
pp. 567-587
Author(s):  
Javier Urquizo ◽  
Clifford Mugnier

Sign in / Sign up

Export Citation Format

Share Document