Deep Spatio-temporal Adaptive 3D Convolutional Neural Networks for Traffic Flow Prediction

2022 ◽  
Vol 13 (2) ◽  
pp. 1-21
Author(s):  
He Li ◽  
Xuejiao Li ◽  
Liangcai Su ◽  
Duo Jin ◽  
Jianbin Huang ◽  
...  

Traffic flow prediction is the upstream problem of path planning, intelligent transportation system, and other tasks. Many studies have been carried out on the traffic flow prediction of the spatio-temporal network, but the effects of spatio-temporal flexibility (historical data of the same type of time intervals in the same location will change flexibly) and spatio-temporal correlation (different road conditions have different effects at different times) have not been considered at the same time. We propose the Deep Spatio-temporal Adaptive 3D Convolution Neural Network (ST-A3DNet), which is a new scheme to solve both spatio-temporal correlation and flexibility, and consider spatio-temporal complexity (complex external factors, such as weather and holidays). Different from other traffic forecasting models, ST-A3DNet captures the spatio-temporal relationship at the same time through the Adaptive 3D convolution module, assigns different weights flexibly according to the influence of historical data, and obtains the impact of external factors on the flow through the ex-mask module. Considering the holidays and weather conditions, we train our model for experiments in Xi’an and Chengdu. We evaluate the ST-A3DNet and the results show that we have better results than the other 11 baselines.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8468
Author(s):  
Kun Yu ◽  
Xizhong Qin ◽  
Zhenhong Jia ◽  
Yan Du ◽  
Mengmeng Lin

Accurate traffic flow prediction is essential to building a smart transportation city. Existing research mainly uses a given single-graph structure as a model, only considers local and static spatial dependencies, and ignores the impact of dynamic spatio-temporal data diversity. To fully capture the characteristics of spatio-temporal data diversity, this paper proposes a cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network (CAFMGCN) model for traffic flow prediction. First, introduce GCN to model the historical traffic data’s three-time attributes (current, daily, and weekly) to extract time features. Second, consider the relationship between distance and traffic flow, constructing adjacency, connectivity, and regional similarity graphs to capture dynamic spatial topology information. To make full use of global information, a cross-attention mechanism is introduced to fuse temporal and spatial features separately to reduce prediction errors. Finally, the CAFMGCN model is evaluated, and the experimental results show that the prediction of this model is more accurate and effective than the baseline of other models.


Author(s):  
Shen Fang ◽  
Veronique Prinet ◽  
Jianlong Chang ◽  
Michael Werman ◽  
Chunxia Zhang ◽  
...  

2022 ◽  
Vol 71 (2) ◽  
pp. 3953-3968
Author(s):  
Mesfer Al Duhayyim ◽  
Amani Abdulrahman Albraikan ◽  
Fahd N. Al-Wesabi ◽  
Hiba M. Burbur ◽  
Mohammad Alamgeer ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 615 ◽  
Author(s):  
Panbiao Liu ◽  
Yong Zhang ◽  
Dehui Kong ◽  
Baocai Yin

Buses, as the most commonly used public transport, play a significant role in cities. Predicting bus traffic flow cannot only build an efficient and safe transportation network but also improve the current situation of road traffic congestion, which is very important for urban development. However, bus traffic flow has complex spatial and temporal correlations, as well as specific scenario patterns compared with other modes of transportation, which is one of the biggest challenges when building models to predict bus traffic flow. In this study, we explore bus traffic flow and its specific scenario patterns, then we build improved spatio-temporal residual networks to predict bus traffic flow, which uses fully connected neural networks to capture the bus scenario patterns and improved residual networks to capture the bus traffic flow spatio-temporal correlation. Experiments on Beijing transportation smart card data demonstrate that our method achieves better results than the four baseline methods.


Sign in / Sign up

Export Citation Format

Share Document