An Introduction to the Federated Learning Standard

2022 ◽  
Vol 25 (3) ◽  
pp. 18-22
Author(s):  
Ticao Zhang ◽  
Shiwen Mao

With the growing concern on data privacy and security, it is undesirable to collect data from all users to perform machine learning tasks. Federated learning, a decentralized learning framework, was proposed to construct a shared prediction model while keeping owners' data on their own devices. This paper presents an introduction to the emerging federated learning standard and discusses its various aspects, including i) an overview of federated learning, ii) types of federated learning, iii) major concerns and the performance evaluation criteria of federated learning, and iv) associated regulatory requirements. The purpose of this paper is to provide an understanding of the standard and facilitate its usage in model building across organizations while meeting privacy and security concerns.

2021 ◽  
Vol 4 (3) ◽  
pp. 251524592110268
Author(s):  
Roberta Rocca ◽  
Tal Yarkoni

Consensus on standards for evaluating models and theories is an integral part of every science. Nonetheless, in psychology, relatively little focus has been placed on defining reliable communal metrics to assess model performance. Evaluation practices are often idiosyncratic and are affected by a number of shortcomings (e.g., failure to assess models’ ability to generalize to unseen data) that make it difficult to discriminate between good and bad models. Drawing inspiration from fields such as machine learning and statistical genetics, we argue in favor of introducing common benchmarks as a means of overcoming the lack of reliable model evaluation criteria currently observed in psychology. We discuss a number of principles benchmarks should satisfy to achieve maximal utility, identify concrete steps the community could take to promote the development of such benchmarks, and address a number of potential pitfalls and concerns that may arise in the course of implementation. We argue that reaching consensus on common evaluation benchmarks will foster cumulative progress in psychology and encourage researchers to place heavier emphasis on the practical utility of scientific models.


2018 ◽  
Author(s):  
soumya banerjee

We outline an automated computational and machine learning framework that predicts disease severity andstratifies patients. We apply our framework to available clinical data. Our algorithm automatically generatesinsights and predicts disease severity with minimal operator intervention. The computational frameworkpresented here can be used to stratify patients, predict disease severity and propose novel biomarkers fordisease. Insights from machine learning algorithms coupled with clinical data may help guide therapy,personalize treatment and help clinicians understand the change in disease over time. Computationaltechniques like these can be used in translational medicine in close collaboration with clinicians and healthcareproviders. Our models are also interpretable, allowing clinicians with minimal machine learning experience toengage in model building. This work is a step towards automated machine learning in the clinic.


2019 ◽  
Vol 11 (1) ◽  
pp. 36-40 ◽  
Author(s):  
Venky Shankar

AbstractBig data are taking center stage for decision-making in many retail organizations. Customer data on attitudes and behavior across channels, touchpoints, devices and platforms are often readily available and constantly recorded. These data are integrated from multiple sources and stored or warehoused, often in a cloud-based environment. Statistical, econometric and data science models are developed for enabling appropriate decisions. Computer algorithms and programs are created for these models. Machine learning based models, are particularly useful for learning from the data and making predictive decisions. These machine learning models form the backbone for the generation and development of AI-assisted decisions. In many cases, such decisions are automated using systems such as chatbots and robots.Of special interest are issues such as omnichannel shopping behavior, resource allocation across channels, the effects of the mobile channel and mobile apps on shopper behavior, dynamic pricing, data privacy and security. Research on these issues reveals several interesting insights on which retailers can build. To fully leverage big data in today’s retailing environment, CRM strategies must be location specific, time specific and channel specific in addition to being customer specific.


2021 ◽  
Author(s):  
Joakim Löfgren ◽  
Dmitry Tarasov ◽  
Taru Koitto ◽  
Patrick Rinke ◽  
Mikhail Balakshin ◽  
...  

Lignin is an abundant biomaterial that currently emerges as a low value by-product in the pulp and paper industry but could be repurposed for high-value products as part of the ongoing global transition to a sustainable society. To increase lignins value, rational and efficient approaches to optimizing lignin biorefineries to produce high value bioproducts are required. Here, we report the optimization of the AquaSolv Omni (AqSO) Biorefinery, a newly introduced biorefinery concept based on hydrothermal pretreatment and solvent extraction. We employ a machine-learning framework based on Bayesian optimization, to provide sample-efficient and guided data collection as well as surrogate model building. The surrogate models allow us to map multiple experimental outputs, including the extracted lignin yield and main structural properties obtained by 2D NMR, as functions of the hydrothermal pretreatment reaction severity and temperature. Our results show that with Bayesian optimization, predictive models can be converged with only 21 data points to within a margin of error comparable to the underlying experimental error. By applying a Pareto point analysis, we demonstrate how the predictive models can be used in tandem to identify optimal extraction conditions for concrete applications in lignin valorization.


2016 ◽  
pp. 1245-1292 ◽  
Author(s):  
Muhammad Ibrahim ◽  
Manzur Murshed

Ranking a set of documents based on their relevances with respect to a given query is a central problem of information retrieval (IR). Traditionally people have been using unsupervised scoring methods like tf-idf, BM25, Language Model etc., but recently supervised machine learning framework is being used successfully to learn a ranking function, which is called learning-to-rank (LtR) problem. There are a few surveys on LtR in the literature; but these reviews provide very little assistance to someone who, before delving into technical details of different algorithms, wants to have a broad understanding of LtR systems and its evolution from and relation to the traditional IR methods. This chapter tries to address this gap in the literature. Mainly the following aspects are discussed: the fundamental concepts of IR, the motivation behind LtR, the evolution of LtR from and its relation to the traditional methods, the relationship between LtR and other supervised machine learning tasks, the general issues pertaining to an LtR algorithm, and the theory of LtR.


Author(s):  
M. Lincy ◽  
A. Meena Kowshalya

Data privacy and security are incredibly important in the healthcare industry. Federated learning is a new way of training a machine learning algorithm using distributed data which is not hosted in a centralized server. Numerous centralized machine learning models exists in literature but none offers privacy to users’ data. This paper proposes a federated learning approach for early detection of Type-2 Diabetes among patients. A simple federated architecture is exploited for early detection of Type-2 diabetes. We compare the proposed federated learning model against our centralised approach. Experimental results prove that the federated learning model ensures significant privacy over centralised learning model whereas compromising accuracy for a subtle extend.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Muhammad Babar ◽  
Muhammad Usman Tariq ◽  
Ahmed S. Almasoud ◽  
Mohammad Dahman Alshehri

The present spreading out of big data found the realization of AI and machine learning. With the rise of big data and machine learning, the idea of improving accuracy and enhancing the efficacy of AI applications is also gaining prominence. Machine learning solutions provide improved guard safety in hazardous traffic circumstances in the context of traffic applications. The existing architectures have various challenges, where data privacy is the foremost challenge for vulnerable road users (VRUs). The key reason for failure in traffic control for pedestrians is flawed in the privacy handling of the users. The user data are at risk and are prone to several privacy and security gaps. If an invader succeeds to infiltrate the setup, exposed data can be malevolently influenced, contrived, and misrepresented for illegitimate drives. In this study, an architecture is proposed based on machine learning to analyze and process big data efficiently in a secure environment. The proposed model considers the privacy of users during big data processing. The proposed architecture is a layered framework with a parallel and distributed module using machine learning on big data to achieve secure big data analytics. The proposed architecture designs a distinct unit for privacy management using a machine learning classifier. A stream processing unit is also integrated with the architecture to process the information. The proposed system is apprehended using real-time datasets from various sources and experimentally tested with reliable datasets that disclose the effectiveness of the proposed architecture. The data ingestion results are also highlighted along with training and validation results.


2020 ◽  
Author(s):  
Roberta Rocca ◽  
Tal Yarkoni

Consensus on standards for evaluating models and theories is an integral part of every science. Nonetheless, in psychology, relatively little focus has been placed on defining reliable communal metrics to assess model performance. Evaluation practices are often idiosyncratic, and are affected by a number of shortcomings (e.g., failure to assess models' ability to generalize to unseen data) that make it difficult to discriminate between good and bad models. Drawing inspiration from fields like machine learning and statistical genetics, we argue in favor of introducing common benchmarks as a means of overcoming the lack of reliable model evaluation criteria currently observed in psychology. We discuss a number of principles benchmarks should satisfy to achieve maximal utility; identify concrete steps the community could take to promote the development of such benchmarks; and address a number of potential pitfalls and concerns that may arise in the course of implementation. We argue that reaching consensus on common evaluation benchmarks will foster cumulative progress in psychology, and encourage researchers to place heavier emphasis on the practical utility of scientific models.


Sign in / Sign up

Export Citation Format

Share Document