Lithium Ion Accelerated Charge Procedure Developed from Half Cell Characterization

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


2019 ◽  
Vol 166 (8) ◽  
pp. A1432-A1438 ◽  
Author(s):  
William Yourey ◽  
Yanbao Fu ◽  
Ning Li ◽  
Vince Battaglia ◽  
Wei Tong

2020 ◽  
Vol 167 (9) ◽  
pp. 090531
Author(s):  
Suhak Lee ◽  
Jason B. Siegel ◽  
Anna G. Stefanopoulou ◽  
Jang-Woo Lee ◽  
Tae-Kyung Lee

2012 ◽  
Vol 236-237 ◽  
pp. 731-735
Author(s):  
Chang Su ◽  
Ling Min Wang ◽  
Li Huan Xu ◽  
Jun Lei Liu ◽  
Fang Yang ◽  
...  

A copolymer of 4-(1H-pyrrol-1-yl)phenol (PLPY) and pyrrole ( P(PLPY-co-Py) )was synthesized. And the chemical structure and battery performance of the prepared materials were characterized comparably by 1H NMR, FT-IR spectra and galvanostatic charge-discharge testing using simulant lithium ion half-cell method, respectively. The results shows that the introduction of the phenol group to the pyrrole as a rigid side chain could prevent the polymer from agglomeration and optimize the particle morphology of the resulting polymers, all of which made it demonstrate a significantly improved specific capacity (73.9 mAh•g-1) compared with PPy (21.4 mAh•g-1)


1997 ◽  
Vol 496 ◽  
Author(s):  
J. Flynn ◽  
C. Marsh

ABSTRACTSeveral carbon materials have been studied for suitability as anode materials in lithium-ion cells. Carbons that have been included in this evaluation are three grades of commercially available mesophase carbon microbeads (MCMB) 6–28, 10–28 and 25–28, two specially prepared mesophase fibers (Amoco), a foreign mesophase fiber and KS-15 graphite (Lonza). Differences in cycling behavior between the three types of MCMB material are shown. Data of full lithium-ion cells demonstrate the effect that the choice of carbon material has on the cell discharge voltage and capacity. Lithium reference electrode experiments in full cells (3.0–4.0Ah capacity), elucidate the dynamics under several charge/discharge regimes and provide a comparison between the performance of carbon fiber and graphite anode materials. These test results indicate that the fibers can be charged at significantly higher rates than graphite without showing polarization at the anode. Full and half cell data also demonstrates the high coulombic efficiencies of the mesophase materials and first cycle efficiencies as compared to graphite. A comparison of two mesophase materials with different textures in full cells under strenuous cycling conditions shows significant differences in capacity retention. SEM photos of fibers showing the different textures are also presented.


2020 ◽  
Vol 8 (1) ◽  
pp. 20218101
Author(s):  
Victor D. Zhuravlev ◽  
Ksenia V. Nefedova ◽  
Elizaveta Yu. Evschik ◽  
Elena A. Sherstobitova ◽  
Valery G. Kolmakov ◽  
...  

The effect of a protective coating of fused lithium borate, Li3BO3, on the physicochemical and electrochemical characteristics of LiCoO2 has been studied. A cathode material produced by the SCS method using binary organic fuel, glycine and citric acid. The influence of the experiment conditions on the morphology, crystal structure and specific surface of lithium cobaltite was studied. Electrochemical testing of LiCoO2∙nLi3BO3 samples, n = 5 and 7 mass %, has been performed in the cathode Li|Li+-electrolyte|LiCoO2∙nLi3BO3 half-cell using 1M LiPF6 in EC/DMC mixture (1:1) as electrolyte in the 2.7-4.3 V range at normalized discharge current С/10, С/5, С/2. The maximal initial discharge capacity of 185 mAh/g was detected for the samples with 5 mass % Li3BO3. The coulomb efficiency of optimal materials in the 40th cycle was 99.1%.


2021 ◽  
pp. 103506
Author(s):  
Amelie Krupp ◽  
Robert Beckmann ◽  
Theys Diekmann ◽  
Ernst Ferg ◽  
Frank Schuldt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document