Effect of N-ethylmaleimide on K transport in density-separated human red blood cells

1987 ◽  
Vol 253 (1) ◽  
pp. C7-C12 ◽  
Author(s):  
L. R. Berkowitz ◽  
D. Walstad ◽  
E. P. Orringer

N-ethylmaleimide (NEM) is a sulfhydryl-reacting agent known to stimulate chloride-dependent K transport in a variety of red cells. In high K sheep red cells, NEM-induced K movements are greater in magnitude in young cells compared with old cells. We hypothesized that human red cells might respond to NEM like high K sheep red cells. To test this idea, cells of various age were exposed to 0.5 mM NEM. We found that, after a 4-h incubation, young cells lost 50% of cell K, compared with 10% K loss in older cells. K loss in all fractions was inhibited by chloride replacement or furosemide.

1969 ◽  
Vol 129 (4) ◽  
pp. 757-774 ◽  
Author(s):  
Nabih I. Abdou ◽  
Maxwell Richter

Irradiated rabbits given allogeneic bone marrow cells from normal adult donors responded to an injection of sheep red blood cells by forming circulating antibodies. Their spleen cells were also capable of forming many plaques using the hemolysis in gel technique, and were also capable of undergoing blastogenesis and mitosis and of incorporating tritiated thymidine upon exposure to the specific antigen in vitro. However, irradiated rabbits injected with allogeneic bone marrow obtained from rabbits injected with sheep red blood cells 24 hr prior to sacrifice (primed donors) were incapable of mounting an immune response after stimulation with sheep red cells. This loss of reactivity by the bone marrow from primed donors is specific for the antigen injected, since the immune response of the irradiated recipients to a non-cross-reacting antigen, the horse red blood cell, is unimpaired. Treatment of the bone marrow donors with high-titered specific antiserum to sheep red cells for 24 hr prior to sacrifice did not result in any diminished ability of their bone marrow cells to transfer antibody-forming capacity to sheep red blood cells. The significance of these results, with respect to the origin of the antigen-reactive and antibody-forming cells in the rabbit, is discussed.


1985 ◽  
Vol 249 (1) ◽  
pp. C124-C128 ◽  
Author(s):  
P. K. Lauf ◽  
C. M. Perkins ◽  
N. C. Adragna

The effects of incubation in anisosmotic media and of metabolic depletion on ouabain-resistant (OR) Cl--dependent K+ influxes stimulated by N-ethylmaleimide (NEM) were studied in human red blood cells using Rb+ as K+ analogue. The NEM-stimulated but not the basal Rb+-Cl- influx measured in phosphate-buffered anisosmotic media was found to be cell volume dependent. When cellular ATP, [ATP]c, was lowered to less than 0.10 of its initial level by exposure to nonmetabolizable 2-deoxy-D-glucose, the NEM-stimulated but not the basal Cl--dependent Rb+ influxes were abolished. Metabolically depleted red blood cells subsequently repleted by incubation in glucose plus inosine regained the NEM-inducible Rb+ (K+) transport activity. The difference in the time course of ATP breakdown and Rb+ influx inhibition suggests that energization of the NEM-stimulated Rb+ flux by metabolism may involve factors additional to ATP.


1987 ◽  
Vol 252 (2) ◽  
pp. C197-C204 ◽  
Author(s):  
H. Fujise ◽  
P. K. Lauf

In low K+ (LK) sheep red cells a significant fraction of the total ouabain-resistant (OR) K+ flux is inhibited when Cl- is replaced by other anions of the Hofmeister series except Br- (Cl(-)-dependent K+ flux). In contrast, high K+ (HK) sheep red cells in isosmotic media did not possess any significant OR Cl(-)-dependent K+ flux when Cl- was replaced by NO3- or I-. However, exposure to hyposmotic solutions, treatment with the sulfhydryl (SH) group reagent N-ethylmaleimide (NEM) or with the bivalent metal ion (Me2+) ionophore A23187 in absence of external Me2+ caused a significant activation of Cl(-)-dependent K+ transport as measured with Rb+ as K+ congener. There was no Cl(-)-dependent Rb+ flux in A23187-treated cells when Mn2+, Mg2+, and Ca2+ were present at 1 mM concentrations, suggesting that cellular accumulation of these Me2+ is inhibitory. Similar to LK red cells, HK red cells failed to respond to A23187 when pretreated with NEM supporting the hypothesis proposed recently (Lauf, P. K. J. Membr. Biol. 88: 1-13, 1985) of a common mechanism of Cl(-)-dependent K+ transport activation. The magnitudes of the Cl(-)-dependent Rb+ fluxes in HK cells were much smaller than those elicited by identical treatments in LK red cells, and the effect of all interventions was not due to the presence of reticulocytes known to possess Cl(-)-dependent K+ transport.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 12 ◽  
Author(s):  
Perumal Thiagarajan ◽  
Charles J. Parker ◽  
Josef T. Prchal

Normal human red blood cells have an average life span of about 120 days in the circulation after which they are engulfed by macrophages. This is an extremely efficient process as macrophages phagocytose about 5 million erythrocytes every second without any significant release of hemoglobin in the circulation. Despite large number of investigations, the precise molecular mechanism by which macrophages recognize senescent red blood cells for clearance remains elusive. Red cells undergo several physicochemical changes as they age in the circulation. Several of these changes have been proposed as a recognition tag for macrophages. Most prevalent hypotheses for red cell clearance mechanism(s) are expression of neoantigens on red cell surface, exposure phosphatidylserine and decreased deformability. While there is some correlation between these changes with aging their causal role for red cell clearance has not been established. Despite plethora of investigations, we still have incomplete understanding of the molecular details of red cell clearance. In this review, we have reviewed the recent data on clearance of senescent red cells. We anticipate recent progresses in in vivo red cell labeling and the explosion of modern proteomic techniques will, in near future, facilitate our understanding of red cell senescence and their destruction.


Blood ◽  
1983 ◽  
Vol 62 (1) ◽  
pp. 214-217 ◽  
Author(s):  
PA Aarts ◽  
PA Bolhuis ◽  
KS Sakariassen ◽  
RM Heethaar ◽  
JJ Sixma

Abstract The hematocrit is one of the main factors influencing platelet adherence to the vessel wall. Raising the hematocrit causes an increase of platelet accumulation of about an order of magnitude. Our studies concern the role of red cell size. We have studied this effect using an annular perfusion chamber, according to Baumgartner, with human umbilical arteries and a steady-flow system. Normal human red blood cells (MCV 95 cu mu) increased platelet adherence sevenfold, as the hematocrit increases from 0 to 0.6. Small erythrocytes from goats (MCV 25 cu mu) caused no increment in adherence in the same hematocrit range. Rabbit erythrocytes (MCV 70 cu mu) caused an intermediate increase in adherence. Red blood cells from newborns (MCV 110–130 cu mu) caused a larger increase in platelet adherence than normal red cells at hematocrit 0.4. These results were further confirmed with large red blood cells from two patients. Experiments with small red cells (MCV 70 cu mu) of patients with iron deficiency showed that platelet adherence was similar to normal red cells, provided the red cell diameter was normal. Small red blood cells of a patient with sideroblastic anemia caused decreased adherence. These data indicate that red cell size is of major importance for platelet adherence. Red cell diameter is more important than average volume. However, for size differences in the human range, the hematocrit remains the dominant parameter.


1991 ◽  
Vol 260 (3) ◽  
pp. C589-C597 ◽  
Author(s):  
H. Fujise ◽  
I. Yamada ◽  
M. Masuda ◽  
Y. Miyazawa ◽  
E. Ogawa ◽  
...  

Normal dog red blood cells lack the Na-K pump, and their cation composition is low K and high Na (LK). Recently, a dog was found with red blood cells containing high K and low Na concentrations (HK) due to the existence of the Na-K pump. In the present study, cation transport and volume regulation in HK cells were compared with those of LK cells. HK cells showed not only Rb influx through a Na-K pump, but also Rb influx through a Cl-dependent K transporter. The Rb influx rate through the Na-K pump was 0.65-1.44 mmol.l cells-1.h-1 in Cl and 1.75-2.24 mmol.l cells-1.h-1 in NO3, in HK cells, but only trace activities are found in LK cells. In HK cells, the Rb influx rate through Cl-dependent K transport was 0.36-0.96 mmol.l cells-1.h-1, and it was enhanced in swollen cells but vanished in shrunken cells. In LK cells, the transport was evident only in swollen cells. The original volume of swollen HK cells was restored by water extrusion promoted by Cl-dependent transport. The Na-Ca exchange transporter, which works as a volume regulator in LK cells, functioned in HK cells only when they were loaded with Na. Hence, the exchange transporter is latent in HK cells under physiological conditions. Moreover, the exchange transporter could restore the cell volume in swollen and Na-loaded HK cells. However, the volume in HK cells was still larger than that in LK cells, while the Na-Ca exchange transporter was working.(ABSTRACT TRUNCATED AT 250 WORDS)


1975 ◽  
Vol 18 (2) ◽  
pp. 227-239
Author(s):  
D. Gingell ◽  
I. Todd

We have devised a method of making a flat oil/water interface which remains flat on inversion. Cell adhesion to the interface can be observed microscopically. Glutaraldehyde-fixed human red blood cells adhere to the interface between physiological saline and hexadecane containing surface-active behenic acid at pH values below about 7-5. At high pH values, cells are prevented from adhering due to dissociation of the carboxyl groups of behenic acid oriented in the interface. The negative red cells are driven away electrostatically. Adherent and non-adherent cells remain on the aqueous side of the interface and do not appreciably deform it when adherent. Cells are electrostatically attracted to a similar interface containing positively charged octadecyltrimethylammonium ions. Cells also adhere to an interface containing octadecanol, which carries no charge. Underlying both electrostatic repulsion and attraction between red cells and oil/water interfaces is an attractive force which may be of electrodynamic (van der Waals) origin.


1992 ◽  
Vol 262 (2) ◽  
pp. C418-C421 ◽  
Author(s):  
J. C. Parker ◽  
G. C. Colclasure

Two sets of observations suggest a linkage between volume-responsive Na and K transport systems in dog red blood cells. 1) The lyotropic anion thiocyanate inhibits shrinkage-induced Na-H exchange and stimulates swelling-induced K-Cl cotransport. 2) The effect of a brief incubation with N-phenylmaleimide (NPM) on Na and K transport depends on the volume of the cells at the time of exposure to the sulfhydryl reagent. Cells shrunken during the NPM incubation and then brought back to normal volume behave as though they were still shrunken, i.e., they show an increased Na flux and a decreased K flux. Cells incubated with NPM in a swollen state retain fluxes characteristic of swollen cells when returned to a normal volume. The electrophoretic mobility of the membrane-associated enzyme glyceraldehyde-3-phosphate dehydrogenase is influenced by the cell volume at the time of NPM exposure. These findings point to the existence of a system in cells that perceives volume changes and coordinates the responses of membrane transporters.


Sign in / Sign up

Export Citation Format

Share Document