Transfer of protein antigens into milk after intravenous injection into lactating mice

1986 ◽  
Vol 251 (2) ◽  
pp. E227-E233
Author(s):  
P. R. Harmatz ◽  
D. G. Hanson ◽  
M. K. Walsh ◽  
R. E. Kleinman ◽  
K. J. Bloch ◽  
...  

We investigated the transfer of bovine serum 125I-albumin (125I-BSA), bovine 125I-gamma-globulin (125I-BGG), 125I-ovalbumin (125I-OVA), and 125I-beta-lactoglobulin (125I-BLG) from the blood into the milk of lactating mice. Equal amounts (by weight) of the radiolabeled proteins were injected intravenously into mice 1 wk postpartum. Total radioactivity, trichloroacetic acid-precipitable radioactivity, and specifically immunoprecipitable radioactivity were measured in serum, mammary gland homogenate, and milk. Clearance of immunoreactive OVA (iOVA) and iBLG from the circulation was more rapid than iBSA and iBGG. The radioactivity in mammary tissue associated with BSA and BGG was greater than 70% immunoprecipitable throughout the 4-h test interval; 125I-OVA and 125I-BLG were less than 12% precipitable 1 and 4 h after injection. In milk obtained at 4 h, there was an approximately 10-fold greater accumulation of iBSA or iBGG than of iOVA or iBLG. These experiments demonstrate that protein antigens differ in their ability to transfer from maternal circulation into milk. The transfer into milk appeared to be in proportion to persistence of the antigens in the maternal circulation.

Reproduction ◽  
2011 ◽  
Vol 141 (3) ◽  
pp. 373-380 ◽  
Author(s):  
Amy-Lynn Frankshun ◽  
Teh-Yuan Ho ◽  
David C Reimer ◽  
Joseph Chen ◽  
Salamia Lasano ◽  
...  

A lactocrine mechanism for delivery of maternally derived relaxin (RLX) into the neonatal circulation as a consequence of nursing was proposed for the pig. Immunoreactive RLX was detected in colostrum and in the serum of newborn pigs only if they were allowed to nurse. Milk-borne RLX concentrations are highest during early lactation (9–19 ng/ml), declining to <2 ng/ml by postnatal day 14. Whether milk-borne RLX is bioactive is unknown. Evidence that RLX concentrations in milk are higher than in maternal circulation in several species suggests the mammary gland as a site of local RLX production. It is unknown whether the porcine mammary gland is a source of RLX. Therefore, objectives were to evaluate RLX bioactivity in porcine milk during the first 2 weeks of lactation, identify the form of RLX in porcine milk, and determine whether mammary tissue from early lactation is a source of milk-borne RLX. Milk RLX bioactivity was determined using anin vitrobioassay in which cAMP production by human embryonic kidney (HEK293T) cells transfected with the human RLX receptor (RXFP1) was measured. RLX bioactivity was highest at lactation day (LD) 0, decreasing to undetectable levels by LD 4. Immunoblot analysis of milk proteins revealed an 18 kDa band, indicating proRLX as the primary form of RLX in porcine milk. ProRLX protein and transcripts were detected in porcine mammary tissue on LD 0 and 7. Results support the lactocrine hypothesis by defining the nature and a potential source for bioactive proRLX in porcine colostrum/milk.


2009 ◽  
Vol 297 (1) ◽  
pp. R194-R201 ◽  
Author(s):  
Shannon L. Kelleher ◽  
Veronica Lopez ◽  
Bo Lönnerdal ◽  
Jodi Dufner-Beattie ◽  
Glen K. Andrews

The lactating mammary gland is composed of multiple cell types that tightly coordinate the accumulation, production, and secretion of milk components, including essential metals such as zinc (Zn). Our previous studies in animal and cell models implicated the Zn transporter Zip3 (Slc39a3) in mammary gland Zn acquisition. Herein, we investigated this hypothesis directly by utilizing Zip3-null mice. Our data verify that Zip3 is expressed in secretory mammary cells; however, Zip3 does not play a major role in Zn import from the maternal circulation. Importantly, the primary localization of Zip3 was associated with the luminal membrane of the secretory mammary cells. Consistent with this localization, Zn transfer studies using 65Zn revealed that Zn retention in the secreted milk pool and milk Zn concentration was higher in Zip3-null compared with wild-type mice. Although total mammary gland Zn concentration was not altered, Zip3-null mice also had altered mammary tissue architecture, increased number of apoptotic cells, and reduced mammary gland weight implicating subtle changes in Zip3-mediated intracellular Zn pools in apoptosis regulation. Taken together, our data indicate that Zip3 does not participate in the acquisition of Zn from maternal circulation for secretion into milk but, in contrast, primarily plays a role in the reuptake and cellular retention of Zn in the mammary gland from the previously secreted milk pool, thus regulating cellular function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masahiko Terajima ◽  
Yuki Taga ◽  
Becky K. Brisson ◽  
Amy C. Durham ◽  
Kotaro Sato ◽  
...  

AbstractIn spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.


2005 ◽  
Vol 45 (8) ◽  
pp. 757 ◽  
Author(s):  
C. Gray ◽  
Y. Strandberg ◽  
L. Donaldson ◽  
R. L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


1982 ◽  
Vol 203 (1) ◽  
pp. 45-50 ◽  
Author(s):  
P M Ahmad ◽  
D S Feltman ◽  
F Ahmad

A simple procedure was devised which allows purification of rat lactating-mammary-gland fatty acid synthase to a high degree of purity, with recoveries of activity exceeding 50%. Over 50 mg of enzyme was isolated from 60 g of mammary tissue. The specific activity of the purified enzyme was about 2.5 mumol of NADPH oxidized/min per mg of protein at 37 degrees. The enzyme appeared homogeneous by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and by immunodiffusion analysis. Each mol (Mr 480 000) of the enzyme bound 3 mol of acetyl and 3-4 mol of malonyl groups when the binding experiments were performed at 0 degrees for 30 s. The presence of NADPH did not influence the binding stoicheiometry for these acyl-CoA derivatives. Approx. 2 mol of taurine was found per mol of the performic acid-oxidized enzyme, suggesting that there were 2 mol of 4′-phosphopantetheine in the native enzyme. Rat mammary-gland fatty acid synthase required free CoA for activity.


2007 ◽  
Vol 87 (2) ◽  
pp. 281-284 ◽  
Author(s):  
R. N. Kirkwood ◽  
J. Pérez Laspiur ◽  
N. K. Ames ◽  
J. B. Moore ◽  
A. Cegielski ◽  
...  

To determine morphological and molecular characteristics of porcine mammary tissue in vivo, mammary tissue was collected from 18 sows at 3 to 6 d of lactation and 17 to 19 d of lactation using a biopsy technique. The success of the technique was determined by monitoring lactation performance, as evidenced by sow rectal temperature, voluntary feed intake, milk somatic cell count, and piglet average daily gain. Up to 1.7 g of mammary tissue was collected at each biopsy without decreasing sow feed intake or piglet growth. Key words: Biopsy, mammary gland, lactation, sow


Development ◽  
2000 ◽  
Vol 127 (14) ◽  
pp. 3107-3118 ◽  
Author(s):  
A.V. Nguyen ◽  
J.W. Pollard

Involution of the mammary gland following weaning is divided into two distinct phases. Initially, milk stasis results in the induction of local factors that cause apoptosis in the alveolar epithelium. Secondly after a prolonged absence of suckling, the consequent decline in circulating lactogenic hormone concentrations initiates remodeling of the mammary gland to the virgin-like state. We have shown that immediately following weaning TGFbeta3 mRNA and protein is rapidly induced in the mammary epithelium and that this precedes the onset of apoptosis. Unilateral inhibition of suckling and hormonal reconstitution experiments showed that TGFbeta3 induction is regulated by milk stasis and not by the circulating hormonal concentration. Directed expression of TGFbeta3 in the alveolar epithelium of lactating mice using a beta-lactoglobulin promoter mobilized SMAD4 translocation to the nucleus and caused apoptosis of these cells, but not tissue remodeling. Transplantation of neonatal mammary tissue derived from TGFbeta3 null mutant mice into syngenic hosts resulted in a significant inhibition of cell death compared to wild-type mice upon milk stasis. These results provide direct evidence that TGFbeta3 is a local mammary factor induced by milk stasis that causes apoptosis in the mammary gland epithelium during involution.


2019 ◽  
Author(s):  
◽  
Ricardo Oliveira Rodrigues

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Disruptive effects of climate change, such as increasing environmental temperature, have direct impacts on economic viability and efficiency of food production. In lactating dairy cows, heat stress reduces milk production and alters function of mammary secretory cells, at least partly by disturbing local protein metabolism. We hypothesized that hyperthermia would not only reduce mammary blood flow but would also reduce mammary extraction of nutrients from blood. In addition, we hypothesized that transcriptional profiling of mammary tissue would reveal disruption of cellular homeostasis. Our objective was to determine the effects of hyperthermia on mammary function. More specifically, we aimed to profile mammary blood flow and the changes in mammary transcriptome of heat-stressed lactating dairy cows. We investigated the effects of early and prolonged exposure of lactating dairy cows to hyperthermia by exposing cows to programmed constantly elevated temperature and humidity to induce and maintain body temperature approximately 1[degree]C above normal. Experiments were conducted to evaluate the production responses of hyperthermic lactating dairy cows, to characterize total and nutritive mammary blood flow, and to elucidate the regulation of mammary function during early and prolonged exposure to hyperthermia. Results from these studies established that 1) hyperthermia reduces total and nutritive mammary blood flow, limiting nutrient disappearance across the mammary gland; 2) hyperthermia does not induce shunting of blood away from the gland; 3) hyperthermia affects mammary tissue transcriptome, mainly altering processes associated with ECM and cell adhesion; 4) the effects of exposure to prolonged heat stress on mammary gene expression are distinct from the effects of feed restriction, in lactating dairy cows; and 5) mammary function is reestablished within 8 days after cessation of heat stress.


Sign in / Sign up

Export Citation Format

Share Document