Alterations of glucose transporter systems in insulin-resistant uremic rats

1989 ◽  
Vol 257 (2) ◽  
pp. E193-E197 ◽  
Author(s):  
D. B. Jacobs ◽  
G. R. Hayes ◽  
J. A. Truglia ◽  
D. H. Lockwood

To further define the cellular alteration(s) involved in the impaired glucose transport associated with chronic uremia, we examined the concentration and translocation of glucose transport systems in adipocytes isolated from partially nephrectomized uremic rats. Uremic animals, compared with matched controls, had increased blood urea nitrogen and serum insulin, whereas serum glucose was unchanged. In agreement with previous work, 125I-insulin binding to its receptor was unaltered and transport of 2-deoxy-D-glucose was decreased in both the absence (basal) and presence of a maximal (7 nM) insulin concentration by 44 and 35%, respectively. To assess the movement and concentration of glucose transport systems in various membrane fractions prepared from basal and insulin-treated (20 nM) uremic fat cells, the technique of D-glucose-inhibitable cytochalasin B binding was utilized. In plasma membranes isolated from these cells the concentration of glucose transporters was decreased by 16 (P less than 0.01) and 30% (P less than 0.005) in basal and insulin-treated cells, respectively. Concomitantly, microsomal membranes prepared from uremic cells treated in the absence and presence of insulin had a 28 (P less than 0.01) and 15% (P less than 0.05) decrease in concentration of glucose transport systems, respectively. Additionally, glucose transporter concentration was significantly decreased by 17% (P less than 0.025) in total membranes prepared from uremic cells. Thus, impairment of glucose transport in uremic fat cells can be attributed to a postbinding defect that, at least in part, results from a decrease in the total concentration of glucose transporters.(ABSTRACT TRUNCATED AT 250 WORDS)

2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


1987 ◽  
Vol 252 (4) ◽  
pp. E441-E453 ◽  
Author(s):  
C. Carter-Su ◽  
K. Okamoto

The ability of glucocorticoids to modify the effect of insulin on glucose transport was investigated in both intact isolated rat adipocytes and in membranes isolated from hormone-treated adipocytes. In intact adipocytes, dexamethasone, a potent synthetic glucocorticoid, inhibited insulin-stimulated 3-O-methylglucose transport at all concentrations of insulin tested (0-2,000 microU/ml). Insulin sensitivity, as well as the maximal response to insulin, was decreased by dexamethasone in the absence of a change in insulin binding. The inhibition was observed regardless of which hormone acted first, was blocked by actinomycin D, and resulted from a decrease in Vmax rather than an increase in Kt of transport. In plasma membranes isolated from insulin-treated adipocytes, glucose transport activity and the amount of glucose transporter covalently labeled with [3H]cytochalasin B were increased in parallel in a dose-dependent fashion. The amount of labeled transporter in a low-density microsomal fraction (LDMF) was decreased in a reciprocal fashion. In contrast, addition of dexamethasone to insulin-stimulated cells caused decreases in both transport activity and amount of labeled transporter in the plasma membranes. This was accompanied by a small increase in the amount of [3H]cytochalasin B incorporated into the glucose transporter in the LDMF. These results are consistent with both insulin and glucocorticoids altering the distribution of glucose transporters between the plasma membrane and LDMF, in opposite directions.


1988 ◽  
Vol 251 (2) ◽  
pp. 491-497 ◽  
Author(s):  
S Matthaei ◽  
J M Olefsky ◽  
E Karnieli

This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.


1995 ◽  
Vol 73 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Patricia A. King ◽  
Mary N. Rosholt ◽  
Kenneth B. Storey

One of the critical adaptations for freeze tolerance by the wood frog, Rana sylvatica, is the production of large quantities of glucose as an organ cryoprotectant during freezing exposures. Glucose export from the liver, where it is synthesized, and its uptake by other organs is dependent upon carrier-mediated transport across plasma membranes by glucose-transporter proteins. Seasonal changes in the capacity to transport glucose across plasma membranes were assessed in liver and skeletal muscle of wood frogs; summer-collected (June) frogs were compared with autumn-collected (September) cold-acclimated (5 °C for 3–4 weeks) frogs. Plasma membrane vesicles prepared from liver of autumn-collected frogs showed 6-fold higher rates of carrier-mediated glucose transport than vesicles from summer-collected frogs, maximal velocity (Vmax) values for transport being 72 ± 14 and 12.0 + 2.9 nmol∙mg protein−1∙s−1, respectively (at 10 °C). However, substrate affinity constants for carrier-mediated glucose transport (K1/2) did not change seasonally. The difference in transport rates was due to greater numbers of glucose transporters in liver plasma membranes from autumn-collected frogs. The total number of transporter sites, as determined by cytochalasin B binding, was 8.5-fold higher in autumn than in summer. Glucose transporters in wood frog liver membranes cross-reacted with antibodies to the rat GluT-2 glucose transporter (the mammalian liver isoform), and Western blots further confirmed a large increase in transporter numbers in liver membranes from autumn- versus summer-collected frogs. By contrast with the liver, however, there were no seasonal changes in glucose-transporter activity or numbers in plasma membranes isolated from skeletal muscle. We conclude that an enhanced capacity for glucose transport across liver, but not muscle, plasma membranes during autumn cold-hardening is an important adaptation that anticipates the need for rapid export of cryoprotectant from liver during natural freezing episodes.


1995 ◽  
Vol 145 (1) ◽  
pp. 27-33 ◽  
Author(s):  
E Kilgour ◽  
S A Baldwin ◽  
D J Flint

Abstract The effect of GH, in vivo, on the glucose transport systems of rat adipocytes has been investigated. Lowering of serum GH levels, by treatment of rats with an antiserum specific for rat GH (anti-rGH), significantly decreased serum levels of both IGF-I and insulin. Treatment with anti-rGH also increased glucose oxidation and the conversion of glucose to lipid by isolated adipocytes. Adipocyte glucose oxidation and lipid synthesis were measured in the presence of a limiting concentration of glucose and therefore reflect changes in glucose transport. Immunoblot analysis of adipocyte subcellular fractions revealed that anti-rGH induced an increase in the amount of the glucose transporters GLUT1 (1·6-fold) and GLUT4 (2·5-fold) present in plasma membranes and a decrease (39%) in the amount of GLUT4 present in low-density microsomal fractions. Lowering of serum GH also increased, by 36%, the amount of GLUT1 present in a total membrane fraction but had no such effect on GLUT4 levels. Replenishment of serum GH, by concurrent administration of ovine GH to rats, prevented all of these effects of anti-rGH. It was concluded that GH in vivo down-regulates the amount of both GLUT1 and GLUT4 present in rat adipocyte plasma membranes. This reflects a decrease in the total cellular levels of GLUT1 and modification of the subcellular distribution of GLUT4 and results in restriction of adipocyte glucose uptake. Journal of Endocrinology (1995) 145, 27–33


1992 ◽  
Vol 288 (1) ◽  
pp. 325-330 ◽  
Author(s):  
S J Vannucci ◽  
H Nishimura ◽  
S Satoh ◽  
S W Cushman ◽  
G D Holman ◽  
...  

Insulin-stimulated glucose transport activity in rat adipocytes is inhibited by isoprenaline and enhanced by adenosine. Both of these effects occur without corresponding changes in the subcellular distribution of the GLUT4 glucose transporter isoform. In this paper, we have utilized the impermeant, exofacial bis-mannose glucose transporter-specific photolabel, 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yloxy)-2-propylamine (ATB-BMPA) [Clark & Holman (1990) Biochem. J. 269, 615-622], to examine the cell surface accessibility of GLUT4 glucose transporters under these conditions. Compared with cells treated with insulin alone, adenosine in the presence of insulin increased the accessibility of GLUT4 to the extracellular photolabel by approximately 25%, consistent with its enhancement of insulin-stimulated glucose transport activity; the plasma membrane concentration of GLUT4 as assessed by Western blotting was unchanged. Conversely, isoprenaline, in the absence of adenosine, promoted a time-dependent (t1/2 approximately 2 min) decrease in the accessibility of insulin-stimulated cell surface GLUT4 of > 50%, which directly correlated with the observed inhibition of transport activity; the plasma membrane concentration of GLUT4 decreased by 0-15%. Photolabelling the corresponding plasma membranes revealed that these alterations in the ability of the photolabel to bind to GLUT4 are transient, as the levels of both photolabel incorporation and plasma membrane glucose transport activity were consistent with the observed GLUT4 concentration. These data suggest that insulin-stimulated GLUT4 glucose transporters can exist in two distinct states within the adipocyte plasma membrane, one which is functional and accessible to extracellular substrate, and one which is non-functional and unable to bind extracellular substrate. These effects are only observed in the intact adipocyte and are not retained in plasma membranes isolated from these cells when analysed for their ability to transport glucose or bind photolabel.


1991 ◽  
Vol 275 (3) ◽  
pp. 597-600 ◽  
Author(s):  
B Vogt ◽  
J Mushack ◽  
E Seffer ◽  
H U Häring

Insulin stimulates glucose transport in isolated fat cells by activation of glucose transporters in the plasma membranes and through translocation of the glucose transporter sub-types GLUT4 (insulin-regulatable) and GLUT1 (HepG2 transporter). The protein kinase C-stimulating phorbol ester phorbol 12-myristate 13-acetate (PMA) is able to mimic partially the effect of insulin on glucose transport, apparently through stimulation of carrier translocation. In order to ascertain whether protein kinase C is involved in the translocation signal to both carrier sub-types, we determined the effect of PMA on the subcellular distribution of GLUT1 and GLUT4 by immunoblotting with specific antibodies directed against these transporters. Isolated rat fat cells (4 x 10(6) cells/ml) were stimulated for 20 min with insulin (6 nM) or PMA (1 nM). 3-O-Methylglucose transport was determined and plasma membranes and low-density microsomes were prepared for Western blotting. 3-O-Methylglucose transport was stimulated 8-9-fold by insulin, and 3-4-fold by PMA (basal, 5.6 +/- 2.3%; insulin, 43.6 +/- 7.3%; PMA, 18.4 +/- 4.9%, n = 9). PMA was able to increase the amount of GLUT4 in the plasma membrane fraction by 2.5(+/- 0.9)-fold (n = 6) whereas insulin stimulation was 4.4(+/- 1.7)-fold (n = 6), paralleled by a corresponding decrease of transport in the low-density microsomes (insulin, 50 +/- 5% of basal; PMA, 63 +/- 11% of basal, n = 6). Although PMA regulates the translocation of GLUT4, it has no effect on GLUT1 in the same cell fractions (increase in plasma membranes: insulin, 1.7 +/- 0.5-fold; PMA, 0.91 +/- 0.1-fold, n = 4; decrease in low-density microsomes: insulin, 53 +/- 11% of basal; PMA, 101 +/- 5% of basal, n = 4). These data are in favour of a role for protein kinase C in signal transduction to GLUT4 but not to GLUT1 in fat cells.


1994 ◽  
Vol 302 (1) ◽  
pp. 271-277 ◽  
Author(s):  
H Nishimura ◽  
I A Simpson

Staurosporine, a widely used protein kinase C inhibitor, completely inhibited both phorbol 12-myristate 13-acetate (PMA)- and insulin-stimulated glucose transport activity in isolated rat adipocytes. The inhibition was non-competitive and was attributed to a blockade of the PMA- and insulin-induced translocation of both GLUT1 and GLUT4 glucose transporters. The PMA-stimulated glucose transport activity was more sensitive to inhibition by staurosporine than was insulin-stimulated transport activity (PMA, IC50 = 1.1 +/- 0.1 microM; insulin, IC50 = 6.4 +/- 0.7 microM; P < 0.05, n = 3). At 1 microM staurosporine the insulin-sensitivity was decreased, i.e. EC50 increased from 0.12 nM to 5.4 nM, but the maximum response to insulin and the time course for stimulation were unaffected. At 6 microM staurosporine the insulin-sensitivity was further decreased, the maximal stimulation was decreased by 25%, and the apparent half-time for stimulation was extended from 2.5 min in control cells to 9.4 min. Staurosporine (30 microM) was able to block insulin's ability to stimulate glucose transport, whether added before or after insulin, by a mechanism that did not alter the rate of GLUT4 internalization. In intact adipose cells, staurosporine (30 microM) induced a slight (30%) decrease in the maximal insulin-induced receptor autophosphorylation and a similar decrease in the tyrosine phosphorylation of pp60 and pp160 (insulin-receptor substrate-1: ‘IRS-1’), but was without effect on insulin binding to its receptor. Conversely, staurosporine induced a concentration-dependent inhibition of the constitutively tyrosine-phosphorylated (pp120) protein and of an insulin-stimulated protein pp53 in the cytosol. The locus of staurosporine's action appears to be distal from the initial insulin-receptor signalling, at a step that regulates the specific translocation of the glucose transporters to the plasma membranes.


1992 ◽  
Vol 284 (2) ◽  
pp. 341-348 ◽  
Author(s):  
D Dimitrakoudis ◽  
T Ramlal ◽  
S Rastogi ◽  
M Vranic ◽  
A Klip

The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of glycaemia.


1985 ◽  
Vol 106 (2) ◽  
pp. 225-231 ◽  
Author(s):  
A.-M. Mendes ◽  
R. J. Madon ◽  
D. J. Flint

ABSTRACT Cortisol implants in normal and diabetic rats reduced body weight, adiposity, insulin receptor concentration and both basal and insulin-stimulated rates of lipogenesis in isolated adipocytes, whilst insulin sensitivity was unchanged. In normal but not diabetic rats these changes were accompanied by increased serum glucose and insulin concentrations. In contrast, progesterone implants in normal and diabetic rats increased body weight gain, adiposity, insulin receptor concentration and both basal and insulin-stimulated rates of lipogenesis in adipose tissue, again without affecting insulin sensitivity. Progesterone did not affect serum insulin concentrations in normal or diabetic rats but accelerated the decline in serum glucose concentrations which occurred during an overnight fast in diabetic rats. The results suggest that (1) cortisol inhibits lipogenesis in adipose tissue without affecting insulin sensitivity, (2) cortisol reduces insulin binding in adipose tissue without a requirement for hyperinsulinaemia, which might itself indirectly lead to down-regulation of the insulin receptor, and (3) in diabetic rats progesterone stimulates lipogenesis in adipose tissue without any increase in food intake or serum insulin concentrations suggesting that progesterone may have a direct anabolic role in adipose tissue. J. Endocr. (1985) 106, 225–231


Sign in / Sign up

Export Citation Format

Share Document