Angiotensin II-induced Akt activation is mediated by metabolites of arachidonic acid generated by CaMKII-stimulated Ca2+-dependent phospholipase A2

2005 ◽  
Vol 288 (5) ◽  
pp. H2306-H2316 ◽  
Author(s):  
Fang Li ◽  
Kafait U. Malik

Angiotensin II (ANG II) promotes vascular smooth muscle cell (VSMC) growth, stimulates Ca2+-calmodulin (CaM)-dependent kinase II (CaMKII), and activates cytosolic Ca2+-dependent phospholipase A2 (cPLA2), which releases arachidonic acid (AA). ANG II also generates H2O2 and activates Akt, which have been implicated in ANG II actions in VSMC. This study was conducted to investigate the relationship of these signaling molecules to Akt activation in rat aortic VSMC. ANG II increased Akt activity, as measured by its phosphorylation at serine-473. ANG II (200 nM)-induced Akt phosphorylation was decreased by extracellular Ca2+ depletion and calcium chelator EGTA and inhibitors of CaM [ N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and CaMKII {(2-[ N-(2-hydroxyethyl)]- N-(4-me-thoxybenzenesulfonyl)]amino- N-(4-chlorocinnamyl)- N-methylbenzyl-amine)}. cPLA2 inhibitor pyrrolidine-1, antisense oligonucleotide, and retroviral small interfering RNA also attenuated ANG II-induced Akt phosphorylation. AA increased Akt phosphorylation, and AA metabolism inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) blocked ANG II- and AA-induced Akt phosphorylation (199.03 ± 27.91% with ANG II and 110.18 ± 22.40% with ETYA + ANG II; 405.00 ± 86.22% with AA and 153.97 ± 63.26% with ETYA + AA). Inhibitors of lipoxygenase (cinnamyl-3,4-dihydroxy-α-cyanocinnamate) and cytochrome P-450 (ketoconazole and 17-octadecynoic acid), but not cyclooxygenase (indomethacin), attenuated ANG II- and AA-induced Akt phosphorylation. Furthermore, 5( S)-, 12( S)-, 15( S)-, and 20-hydroxyeicosatetraenoic acids and 5,6-, 11,12-, and 14,15-epoxyeicosatrienoic acids increased Akt phosphorylation. Catalase inhibited ANG II-increased H2O2 production but not Akt phosphorylation. Oleic acid, which also increased H2O2 production, did not cause Akt phosphorylation. These data suggest that ANG II-induced Akt activation in VSMC is mediated by AA metabolites, most likely generated via lipoxygenase and cytochrome P-450 consequent to AA released by CaMKII-activated cPLA2 and independent of H2O2 production.

1986 ◽  
Vol 250 (2) ◽  
pp. R287-R291
Author(s):  
C. E. Wade ◽  
L. C. Keil ◽  
D. J. Ramsay

After alterations in sodium balance, osmotic reactivity of vasopressin (AVP) release was evaluated in seven conscious dogs during bilateral intracarotid infusions of hypertonic saline. A low-sodium diet reduced plasma sodium concentration by 3%; deoxycorticosterone acetate (30 mg/day for 2 days) elevated the concentration by 1%. Neither treatment altered resting plasma AVP. Hypertonic intracarotid infusions increased jugular plasma osmolality by 20 +/- 2 mosmol/kg independent of manipulations. Plasma AVP values were significantly increased (P less than 0.05) in sodium-depleted dogs compared with values of the control animals. In addition, the osmotic reactivity of AVP release was evaluated during exogenous administration of angiotensin II (ANG II). Intravenous infusion of ANG II (5 ng . kg-1 . min-1) increased plasma concentration of ANG II but did not alter concentration of plasma AVP. The slope for the relationship of jugular plasma osmolality to plasma AVP during hypertonic intracarotid infusions was significantly increased with intravenous infusion of ANG II. Sodium depletion and intravenous ANG II potentiate the relationship of plasma osmolality and plasma AVP when evaluated with intracarotid hypertonic saline infusions in dogs.


1997 ◽  
Vol 273 (1) ◽  
pp. R293-R300 ◽  
Author(s):  
A. Oyekan ◽  
M. Balazy ◽  
J. C. McGiff

In the rat isolated perfused kidney, 5,8,11,14-eicosatetraynoic acid, an inhibitor of all pathways of arachidonic acid (AA) metabolism, diminished endothelin-1 (ET-1)- and angiotensin II (ANG II)-induced renal vasoconstriction by approximately 60-70%. We then examined the individual contribution of each oxygenase, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 (CYP) to the vasoconstrictor effects of ET-1 and ANG II. Inhibition of COX with indomethacin reduced by 30-40% the vasoconstrictor responses to ET-1 and ANG II. Inhibition of 12-LOX with baicalein and 5- and 12-LOX with 5,8,11-eicosatriynoic acid attenuated ANG II-induced renal vasoconstriction by approximately 40-60% but did not affect responses to ET-1. In contrast, 12,12-dibromododec-11-enoic acid (DBDD), an inhibitor of the CYP omega/omega 1-hydroxylase pathway, diminished ET-1-induced renal vasoconstriction by 30-40%, an effect reproduced by depletion of CYP enzymes with CoCl2. Neither DBDD nor CoCl2 affected renal vasoconstriction elicited by ANG II. ET-1 increased efflux of 19- and 20-hydroxyeicosatetraenoic acid, an effect reduced by DBDD. Thus products of the COX and CYP pathways contribute to the renal vasoconstrictor response to ET-1, whereas COX- and LOX-derived eicosanoids contribute to the response to ANG II, accounting for > or = 80% of the vasoactivity of the peptides.


2015 ◽  
Vol 6 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Lorenzo A. Calò ◽  
Paul A. Davis ◽  
Giuseppe Maiolino ◽  
Elisa Pagnin ◽  
Verdiana Ravarotto ◽  
...  

Hypothesis/Introduction: Angiotensin II (Ang II) has been shown to control erythropoietin (EPO) synthesis as Ang II type 1 receptor (AT1R) blockers block Ang-II-induced EPO oversecretion. To further explore the involvement of AT1R in processes controlling EPO levels, plasma EPO and mononuclear cell NADPH oxidase 4 (NOX4) - a NOX family member involved in oxygen sensing, which is a process central to controlling EPO levels - were assessed in Bartter's/Gitelman's syndrome (BS/GS) patients, a human model of endogenous AT1R antagonism and healthy subjects. Heme oxygenase (HO)-1, antioxidant and anti-inflammatory factor related to NOX4 activation, and the relationship of EPO and NOX4 to HO-1 were also assessed. Materials and Methods: EPO was measured by chemiluminescent immunoassay, HO-1 by sandwich immunoassay and NOX4 protein expression by Western blot. Results: EPO was increased in BS/GS patients compared to healthy subjects (7.64 ± 2.47 vs. 5.23 ± 1.07 U/l; p = 0.025), whereas NOX4 did not differ between BS/GS and healthy subjects (1.76 ± 0.61 vs. 1.65 ± 0.54 densitometric units; p = n.s.), and HO-1 was increased in BS/GS patients compared to healthy subjects (9.58 ± 3.07 vs. 5.49 ± 1.04 ng/ml; p = 0.003). NOX4 positively correlated with HO-1 only in BS/GS patients; no correlation was found between EPO and either NOX4 or HO-1 in those two groups. Conclusions: The effect of the renin-angiotensin system on EPO cannot be solely mediated by Ang II via AT1R signaling, but rather, EPO levels are also determined by a complex interrelated set of signals that involve AT2R, nitric oxide levels, NOX4 and HO-1 activity.


1975 ◽  
Author(s):  
J. W. Ryan ◽  
Una S. Ryan

The lungs metabolize a variety of vasoactive substances, including bradykinin (BK), angiotensin I (AT I), PGE2 and F2α, norepinephrine, 5-HT, 5’-ATP and 5’-AMP. In contrast, the lungs od not metabolize angiotensin II (AT II), PGA2, histamine and epinephrine. Of the substances metabolized, all (with the possible exceptions of the prostaglandins) are processed primarily by the pulmonary endothelial cells. Furthermore, the means by which the substances are processed suggest that endothelial cells determine the vasoactive substances allowed to enter the systemic arterial circulation. BK is inactivated while AT I is converted to its potent homolog, AT II. AT II enters the arterial circulation. The metabolism of BK and AT I may be effected by the same enzyme. Pulmonary endothelial cells are a rich source of thromboplastin, an enzyme capable of degrading BK and AT I. However, the relationship of thromboplastin to the fates of these hormones is not clear : The metabolic products produced are not those produced by intact lungs nor by endothelial cells in culture. In addition, thromboplastin degrades substances (e.g. AT II), which are not degraded by intact lungs. Possibly the extrinsic clotting system plays a role when activated but not under physiologic conditions.


Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3284-3294 ◽  
Author(s):  
Pablo G. Mele ◽  
Alejandra Duarte ◽  
Cristina Paz ◽  
Alessandro Capponi ◽  
Ernesto J. Podestá

Although the role of arachidonic acid (AA) in angiotensin II (ANG II)- and potassium-stimulated steroid production in zona glomerulosa cells is well documented, the mechanism responsible for AA release is not fully described. In this study we evaluated the mechanism involved in the release of intramitochondrial AA and its role in the regulation of aldosterone synthesis by ANG II in glomerulosa cells. We show that ANG II and potassium induce the expression of acyl-coenzyme A (CoA) thioesterase 2 and acyl-CoA synthetase 4, two enzymes involved in intramitochondrial AA generation/export system well characterized in other steroidogenic systems. We demonstrate that mitochondrial ATP is required for AA generation/export system, steroid production, and steroidogenic acute regulatory protein induction. We also demonstrate the role of protein tyrosine phosphatases regulating acyl-CoA synthetase 4 and steroidogenic acute regulatory protein induction, and hence ANG II-stimulated aldosterone synthesis.


1988 ◽  
Vol 255 (4) ◽  
pp. R591-R599 ◽  
Author(s):  
K. Yamaguchi ◽  
H. Nishimura

Angiotensin II (ANG II) decreases blood pressure of fowl. To characterize the vasodilating action of ANG II and its underlying mechanisms, we examined the effect of [Asp1, Val5]ANG II (fowl ANG II) on isometric tension of fowl aortic rings. [Val5]ANG II (10(-8) to 10(-5) M) produced rapid, reversible, dose-dependent relaxation of aortas precontracted with phenylephrine. [Sar1,Ile8]ANG II blocked ANG II-induced relaxation; propranolol, atropine, methysergid, pyrilamine, and cimetidine did not. Endothelium removal abolished relaxation responses to ANG II and acetylcholine but not to isoproterenol or sodium nitroprusside. Inhibitors of phospholipase or arachidonic acid metabolism (quinacrine, indomethacin, 5,8,11,14-eicosatetraenoic acid, hydroquinone, metyrapone, SKF 525A) and a calcium channel blocker (verapamil) did not inhibit ANG II-induced relaxation, whereas indomethacin nearly completely blocked arachidonic acid-induced dilation of aortas with or without endothelia. Guanosine 3',5'-cyclic monophosphate (cGMP) levels in the aorta increased 15 s after ANG II application. Aortic relaxation was caused by 8-bromo-cGMP with or without intact endothelium. These results suggest that ANG II-induced relaxation of fowl aortas involves 1) an endothelium-dependent mechanism and 2) cGMP but not arachidonic acid metabolites.


2008 ◽  
Vol 294 (4) ◽  
pp. F982-F989 ◽  
Author(s):  
Seon-Young Kim ◽  
Rukhsana Gul ◽  
So-Young Rah ◽  
Suhn Hee Kim ◽  
Sung Kwang Park ◽  
...  

ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca2+-mobilizing second messenger cyclic ADP-ribose (cADPR) from NAD+. In this study, we investigated the molecular basis of ADPR-cyclase activation and the following cellular events in angiotensin II (ANG II) signaling in mouse mesangial cells (MMCs). Treatment of MMCs with ANG II induced an increase in intracellular Ca2+ concentrations through a transient Ca2+ release via an inositol 1,4,5-trisphosphate receptor and a sustained Ca2+ influx via L-type Ca2+ channels. The sustained Ca2+ signal, but not the transient Ca2+ signal, was blocked by a cADPR antagonistic analog, 8-bromo-cADPR (8-Br-cADPR), and an ADPR-cyclase inhibitor, 4,4′-dihydroxyazobenzene (DHAB). In support of the results, ANG II stimulated cADPR production in a time-dependent manner, and DHAB inhibited ANG II-induced cADPR production. Application of pharmacological inhibitors revealed that activation of ADPR-cyclase by ANG II involved ANG II type 1 receptor, phosphoinositide 3-kinase, protein tyrosine kinase, and phospolipase C-γ1. Moreover, DHAB as well as 8-Br-cADPR abrogated ANG II-mediated Akt phosphorylation, nuclear translocation of nuclear factor of activated T cell, and uptake of [3H]thymidine and [3H]leucine in MMCs. These results demonstrate that ADPR-cyclase in MMCs plays a pivotal role in ANG II signaling for cell proliferation and protein synthesis.


1997 ◽  
Vol 136 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Junji Shinoda ◽  
Osamu Kozawa ◽  
Atsushi Suzuki ◽  
Yasuko Watanabe-Tomita ◽  
Yutaka Oiso ◽  
...  

Abstract In a previous study, we have shown that angiotensin II (Ang II) activates phosphatidylcholinehydrolyzing phospholipase D due to Ang II-induced Ca2+ influx from extracellular space in subcultured rat aortic smooth muscle cells. In the present study, we have investigated the role of phospholipase D in Ang II-induced arachidonic acid (AA) metabolite release and prostacyclin synthesis in subcultured rat aortic smooth muscle cells. Ang II significantly stimulated AA metabolite release in a concentration-dependent manner in the range between 1 nmol/l and 0·1 μmol/l. d,l-Propranolol hydrochloride (propranolol), an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the Ang II-induced release of AA metabolites. The Ang II-induced AA metabolite release was reduced by chelating extracellular Ca2+ with EGTA. Genistein, an inhibitor of protein tyrosine kinases, significantly suppressed the Ang II-induced AA metabolite release. 1,6-Bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a potent and selective inhibitor of diacylglycerol lipase, significantly inhibited the Ang II-induced AA metabolite release. Both propranolol and RHC-80267 inhibited the Ang II-induced synthesis of 6-keto-prostaglandin F1α, a stable metabolite of prostacyclin. The synthesis was suppressed by genistein. These results strongly suggest that the AA metabolite release induced by Ang II is mediated, at least in part, through phosphatidylcholine hydrolysis by phospholipase D activation in aortic smooth muscle cells. European Journal of Endocrinology 136 207–212


2006 ◽  
Vol 26 (3) ◽  
pp. 180-191 ◽  
Author(s):  
Shawn D. Hingtgen ◽  
Xin Tian ◽  
Jusan Yang ◽  
Shannon M. Dunlay ◽  
Andrew S. Peek ◽  
...  

Angiotensin II (ANG II) has profound effects on the development and progression of pathological cardiac hypertrophy; however, the intracellular signaling mechanisms are not fully understood. In this study, we used genetic tools to test the hypothesis that increased formation of superoxide (O2−·) radicals from a Rac1-regulated Nox2-containing NADPH oxidase is a key upstream mediator of ANG II-induced activation of serine-threonine kinase Akt, and that this signaling cascade plays a crucial role in ANG II-dependent cardiomyocyte hypertrophy. ANG II caused a significant time-dependent increase in Rac1 activation and O2−· production in primary neonatal rat cardiomyocytes, and these responses were abolished by adenoviral (Ad)-mediated expression of a dominant-negative Rac1 (AdN17Rac1) or cytoplasmic Cu/ZnSOD (AdCu/ZnSOD). Moreover, both AdN17Rac1 and AdCu/ZnSOD significantly attenuated ANG II-stimulated increases in cardiomyocyte size. Quantitative real-time PCR analysis demonstrated that Nox2 is the homolog expressed at highest levels in primary neonatal cardiomyocytes, and small interference RNA (siRNA) directed against it selectively decreased Nox2 expression by >95% and abolished both ANG II-induced O2−· generation and cardiomyocyte hypertrophy. Finally, ANG II caused a time-dependent increase in Akt activity via activation of AT1 receptors, and this response was abolished by Ad-mediated expression of cytosolic human O2−· dismutase (AdCu/ZnSOD). Furthermore, pretreatment of cardiomyocytes with dominant-negative Akt (AdDNAkt) abolished ANG II-induced cellular hypertrophy. These findings suggest that O2−· generated by a Nox2-containing NADPH oxidase is a central mediator of ANG II-induced Akt activation and cardiomyocyte hypertrophy, and that dysregulation of this signaling cascade may play an important role in cardiac hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document