Thapsigargin, a new inotropic agent, antagonizes action of endothelin-1 in rat atrial cells

1992 ◽  
Vol 263 (6) ◽  
pp. H1689-H1694 ◽  
Author(s):  
P. Vigne ◽  
J. P. Breittmayer ◽  
C. Frelin

In isolated newborn rat atrial cells, thapsigargin induced a slow rise in cytosolic free Ca2+ concentration ([Ca2+]i) (half-maximum effective concentration = 1 microM) that was independent of the presence of external Ca2+. A 5-min treatment of atrial cells with 5 mM caffeine reduced but did not abolish the action of thapsigargin on [Ca2+]i. A first treatment of atrial cells with 10 microM thapsigargin reduced the action of ionomycin on [Ca2+]i. It also antagonized in a noncompetitive manner the Ca(2+)-mobilizing action of 100 nM endothelin-1 (ET-1). The half-maximum concentration for the inhibition by thapsigargin of ET-1 action was 0.2 microM. Thapsigargin had no action on the basal or ET-1 (100 nM)-stimulated production of inositol phosphates. These results suggest that thapsigargin discharges an inositol 1,4,5-trisphosphate-sensitive and caffeine-insensitive intracellular Ca2+ pool distinct from the sarcoplasmic reticulum. In isolated rat left atria, paced at 1 Hz, thapsigargin (10 microM) produced a transient 48% increase in contractility. It did not alter the contractile responses to 1 microM isoproterenol or to 5 mM caffeine. It had no action on postrest potentiation. Thapsigargin (10 microM) almost completely suppressed the positive inotropic action of 100 nM ET-1. It had no action on the transient negative inotropic response to ET-1. These results suggest that most of the positive inotropic effect of ET-1 is linked to its capacity to mobilize an inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ pool distinct from the sarcoplasmic reticulum.

1992 ◽  
Vol 263 (2) ◽  
pp. C535-C539 ◽  
Author(s):  
D. M. Berman ◽  
W. F. Goldman

Cytosolic Ca2+ concentrations ([Ca2+]cyt) and [3H]inositol phosphates ([3H]InsP) were correlated while varying the Ca2+ content of the sarcoplasmic reticulum (SR) in cultured A7r5 cells at rest and during activation with [Arg8]-vasopressin (AVP). Thapsigargin (TG) raised and superfusion with 0 Ca2+ lowered [Ca2+]cyt, but both treatments decreased SR Ca2+ and AVP-evoked Ca2+ transients. Neither TG nor 0 Ca2+ affected basal [3H]InsP, but both treatments increased AVP-evoked synthesis of [3H]InsP. Exposure for several minutes to 40 mM K+ solution, BAY K 8644, or low-Na+ solution all elevated [Ca2+]cyt and, thereby, increased SR Ca2+, as manifested by augmented AVP-evoked Ca2+ transients. In all three cases, AVP-evoked, but not basal, [3H]InsP were reduced. The inhibitory effect of 40 mM K+ on AVP-evoked [3H]InsP synthesis was blocked when SR Ca2+ uptake was prevented by TG. Brief (30-s) exposures to 40 mM K+, which elevated [Ca2+]cyt but not SR Ca2+ loading, did not modify AVP-evoked [3H]InsP synthesis or Ca2+ transients. These results demonstrate an inverse relationship between SR Ca2+ content and evoked [3H]-InsP synthesis. Moreover, they suggest that SR Ca2+ may serve as a signal that modulates sarcolemmal [3H]InsP formation.


Circulation ◽  
1999 ◽  
Vol 99 (6) ◽  
pp. 823-828 ◽  
Author(s):  
Elizabeth A. Woodcock ◽  
Nancy Reyes ◽  
Alexander N. Jacobsen ◽  
Xiao-Jun Du

1988 ◽  
Vol 253 (3) ◽  
pp. 703-710 ◽  
Author(s):  
J E Brown ◽  
M Rudnick ◽  
A J Letcher ◽  
R F Irvine

Fixatives that contain methanol extract an unknown compound from several tissues including the retinas of squid (Loligo). We have determined that the compound probably contains (1) a myo-inositol ring that is phosphorylated in more than one position (including at the 5-hydroxyl), (2) a charged moiety that is not susceptible to alkaline phosphatase, and (3) a methyl group. We have found that the compound can be made by treating either phosphatidylinositol bisphosphate or human red cell ghosts with acidic methanol. We have confirmed the observation of Lips, Bross & Majerus [Proc. Natl. Acad. Sci. U.S.A. 85, 88-92] that the compound also can be made by methanolysis of inositol (cyclic 1:2,4,5)trisphosphate; however, we have not found inositol (cyclic 1:2,4,5)trisphosphate in either stimulated or unstimulated squid retinas. We tentatively identify the compound as (1-methylphosphoryl)inositol 4,5-bisphosphate formed by methanolysis of phosphatidylinositol 4,5-bisphosphate. By using this methanolysis to incorporate label from [14C]methanol, we have estimated the mass of inositol 1,4,5-trisphosphate in squid retinas to be approx. 30 mumol/l of retinal volume.


1995 ◽  
Vol 15 (5) ◽  
pp. 387-397 ◽  
Author(s):  
Cecilia Hidalgo ◽  
Paulina Donoso

This article discusses how changes in luminal calcium concentration affect calcium release rates from triad-enriched sarcoplasmic reticulum vesicles, as well as single channel opening probability of the ryanodine receptor/calcium release channels incorporated in bilayers. The possible participation of calsequestrin, or of other luminal proteins of sarcoplasmic reticulum in this regulation is addressed. A comparison with the regulation by luminal calcium of calcium release mediated by the inositol 1,4,5-trisphosphate receptor/calcium channel is presented as well.


1987 ◽  
Vol 242 (2) ◽  
pp. 361-366 ◽  
Author(s):  
N M Dean ◽  
J D Moyer

A high-performance-liquid-chromatography (h.p.l.c.) separation was developed, which resolves isomers of inositol monophosphate (IP), inositol bisphosphate (IP2), and inositol trisphosphate (IP3) in a single run. In GH3 cells labelled with [3H]inositol, treated with Li+ and thyrotropin-releasing hormone (TRH), radiolabelled components identified as inositol 1-phosphate (I1P), inositol 2-phosphate (I2P), inositol 4-phosphate (I4P), inositol 1,4-bisphosphate [I(1,4)P2], inositol 1,3,4-trisphosphate [I(1,3,4)P3] and inositol 1,4,5-trisphosphate [I(1,4,5)P3] are present, as are multiple unidentified IP2 peaks. After TRH stimulation, both I1P and I4P increase, the increase in I4P preceding that of I1P; I(1,4)P2 and an unknown IP2 increase; and both I(1,3,4)P3 and I(1,4,5)P3 increase, the increase in I(1,4,5)P3 being rapid and transient, whereas the increase in I(1,3,4)P3 is slower and more sustained. The most rapidly appearing inositol phosphates produced after TRH stimulation are I(1,4)P2 and I(1,4,5)P3.


2000 ◽  
Vol 11 (5) ◽  
pp. 1845-1858 ◽  
Author(s):  
Marisa Jaconi ◽  
Claire Bony ◽  
Stephen M. Richards ◽  
André Terzic ◽  
Serge Arnaudeau ◽  
...  

The signaling role of the Ca2+ releaser inositol 1,4,5-trisphosphate (IP3) has been associated with diverse cell functions. Yet, the physiological significance of IP3 in tissues that feature a ryanodine-sensitive sarcoplasmic reticulum has remained elusive. IP3 generated by photolysis of caged IP3 or by purinergic activation of phospholipase Cγ slowed down or abolished autonomic Ca2+ spiking in neonatal rat cardiomyocytes. Microinjection of heparin, blocking dominant-negative fusion protein, or anti-phospholipase Cγ antibody prevented the IP3-mediated purinergic effect. IP3 triggered a ryanodine- and caffeine-insensitive Ca2+ release restricted to the perinuclear region. In cells loaded with Rhod2 or expressing a mitochondria-targeted cameleon and TMRM to monitor mitochondrial Ca2+ and potential, IP3 induced transient Ca2+ loading and depolarization of the organelles. These mitochondrial changes were associated with Ca2+ depletion of the sarcoplasmic reticulum and preceded the arrest of cellular Ca2+ spiking. Thus, IP3 acting within a restricted cellular region regulates the dynamic of calcium flow between mitochondria and the endoplasmic/sarcoplasmic reticulum. We have thus uncovered a novel role for IP3 in excitable cells, the regulation of cardiac autonomic activity.


1992 ◽  
Vol 284 (2) ◽  
pp. 447-455 ◽  
Author(s):  
F M McConnell ◽  
S B Shears ◽  
P J L Lane ◽  
M S Scheibel ◽  
E A Clark

Cross-linking of surface immunoglobulin (Ig) receptors on human B cells leads to the activation of a tyrosine kinase. The activated tyrosine kinase subsequently phosphorylates a number of substrates, including phospholipase C-gamma. This enzyme breaks down phosphoinositol bisphosphate to form two intracellular messengers, diacylglycerol and inositol 1,4,5-trisphosphate, leading to the activation of protein kinase C and the release of intracellular Ca2+ respectively. We have used h.p.l.c. and flow cytometry to measure accurately the inositol phosphate turnover and Ca2+ release in anti-Ig-stimulated human B cells. In particular, we have examined the effect of dose of the cross-linking antibody on the two responses. The identity of putative messenger inositol phosphates has been verified by structural analysis, and the amounts of both inositol phosphates and Ca2+ present have been quantified. In the Ramos Burkitt lymphoma, which is very sensitive to stimulus through its Ig receptors, both inositol phosphate production and Ca2+ release were found to be related to the dose of anti-Ig antibody applied. This suggests that phospholipase C-mediated signal transduction in human B cells converts the degree of cross-linking of the immunoglobulin receptor quantitatively into intracellular signals.


Sign in / Sign up

Export Citation Format

Share Document