gh3 cells
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 68)

H-INDEX

43
(FIVE YEARS 5)

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 86
Author(s):  
Tzu-Hsien Chuang ◽  
Hsin-Yen Cho ◽  
Sheng-Nan Wu

Sparsentan is viewed as a dual antagonist of endothelin type A (ETA) receptor and angiotensin II (AngII) receptor and it could be beneficial in patients with focal segmental glomerulosclerosis. Moreover, it could improve glomerular filtration rate and augment protective tissue remodeling in mouse models of focal segmental glomerulosclerosis. The ionic mechanisms through which it interacts with the magnitude and/or gating kinetics of ionic currents in excitable cells were not thoroughly investigated. Herein, we aimed to examine the effects of varying sparsentan concentrations on ionic currents residing in pituitary GH3 somatolactotrophs. From whole-cell current recordings made in GH3 cells, sparsentan (0.3–100 μM) differentially inhibited the peak and late components of voltage-gated Na+ current (INa). The IC50 value of sparsentan required to exert a reduction in peak and late INa in GH3 cells was 15.04 and 1.21 μM, respectively; meanwhile, the KD value estimated from its shortening in the slow component of INa inactivation time constant was 2.09 μM. The sparsentan (10 μM) presence did not change the overall current–voltage relationship of INa; however, the steady-state inactivation curve of the current was shifted to more negative potential in its presence (10 μM), with no change in the gating charge of the curve. The window INa activated by a brief upsloping ramp was decreased during exposure to sparsentan (10 μM); moreover, recovery of peak INa became slowed in its presence. The Tefluthrin (Tef)-stimulated resurgent INa activated in response to abrupt depolarization followed by the descending ramp pulse was additionally attenuated by subsequent application of sparsentan. In continued presence of Tef (3 μM) or β-pompilidotoxin (3 μM), further application of sparsentan (3 μM) reversed their stimulation of INa. However, sparsentan-induced inhibition of INa failed to be overcome by subsequent application of either endothelin 1 (1 μM) or angiotensin II (1 μM); moreover, in continued presence of endothelin (1 μM) or angiotensin II (1 μM), further addition of sparsentan (3 μM) effectively decreased peak INa. Additionally, the application of sparsentan (3 μM) inhibited the peak and late components of erg-mediated K+ current in GH3 cells, although it mildly decreased the amplitude of delayed-rectifier K+ current. Altogether, this study provides a distinct yet unidentified finding that sparsentan may perturb the amplitude or gating of varying ionic currents in excitable cells.


2021 ◽  
Author(s):  
Chao Tang ◽  
Chunyu Zhong ◽  
Junhao Zhu ◽  
Feng Yuan ◽  
Jin Yang ◽  
...  

Abstract Approximately 30–40% of growth hormone-secreting pituitary adenoma (GHPA) harbor somatic mutations in the GNAS (α subunit of the stimulatory G protein) gene. However, the latent functional role of the mutations and relative molecular mechanism in GHPA remain unknown. The GNAS gene mutations were detected in GHPAs using a standard PCR-sequencing procedure. The mutation-associated MEG3 expression was measured by RT-qPCR. MEG3 was manipulated in GH3 cells using a lentiviral expression system. Alterations in mRNA profiles in the MEG3-overexpressed cells were analyzed by RNA-seq. The cell invasion ability was measured using a Transwell assay, and the EMT-associated proteins were quantified by immunofluorescence and western blot. Finally, a tumor cell xenograft mouse model was applied to verify the effect of MEG3 on tumor growth and invasiveness. The percentage of invasive tumors was significantly declined in GNAS-mutated GHPA tumors with the GNAS mutations compared to those tumors with the wild-type of GNAS. Consistently, the GH3 cell invasion capacity was decreased by expressing the mutant GNAS. MEG3 is uniquely expressed at high levels in GHPA harboring the mutated GNAS gene. Accordingly, the upregulation of MEG3 resulted in inhibiting cell invasion; and vice versa, the downregulation of MEG3 led to enhancing cell invasion. Mechanistically, the high level of MEG3 in mutated GNAS cells prevented the cell invasion via inactivation of the Wnt/β-catenin signaling pathway, which was further validated in vivo. The GNAS mutations inhibit the invasiveness of GHPA cells via inactivation of the MEG3/Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuman Wang ◽  
Aihua Wang ◽  
Yu Zhang ◽  
Kejing Zhu ◽  
Xiong Wang ◽  
...  

Abstract Background Prolactinoma is a functional pituitary adenoma that secretes excessive prolactin. Dopamine agonists (DAs) such as bromocriptine (BRC) are the first-line treatment for prolactinomas, but the resistance rate is increasing year by year, creating a clinical challenge. Therefore, it is urgent to explore the molecular mechanism of bromocriptine resistance in prolactinomas. Activation of the P38 MAPK pathway affects multidrug resistance in tumours. Our previous studies have demonstrated that inhibiting MAPK14 can suppress the occurrence of prolactinoma, but the role of MAPK11/12/13/14 (p38 MAPK) signalling in dopamine agonist-resistant prolactinomas is still unclear. Methods A prolactinoma rat model was established to determine the effect of bromocriptine on MAPK11/12/13/14 signalling. DA-resistant GH3 cells and DA-sensitive MMQ cells were used, and the role of MAPK11/12/13/14 in bromocriptine-resistant prolactinomas was preliminarily verified by western blot, RT-qPCR, ELISA, flow cytometry and CCK-8 experiments. The effects of MAPK11 or MAPK14 on bromocriptine-resistant prolactinomas were further verified by siRNA transfection experiments. Results Bromocriptine was used to treat rat prolactinoma by upregulating DRD2 expression and downregulating the expression level of MAPK11/12/13/14 in vivo experiments. The in vitro experiments showed that GH3 cells are resistant to bromocriptine and that MMQ cells are sensitive to bromocriptine. Bromocriptine could significantly reduce the expression of MAPK12 and MAPK13 in GH3 cells and MMQ cells. Bromocriptine could significantly reduce the expression of MAPK11, MAPK14, NF-κB p65 and Bcl2 in MMQ but had no effect on MAPK11, MAPK14, NF-κB p65 and Bcl2 in GH3 cells. In addition, knockdown of MAPK11 and MAPK14 in GH3 cells by siRNA transfection reversed the resistance of GH3 cells to bromocriptine, and haloperidol (HAL) blocked the inhibitory effect of bromocriptine on MAPK14, MAPK11, and PRL in MMQ cells. Our findings show that MAPK11 and MAPK14 proteins are involved in bromocriptine resistance in prolactinomas. Conclusion Bromocriptine reduces the expression of MAPK11/12/13/14 in prolactinomas, and MAPK11 and MAPK14 are involved in bromocriptine resistance in prolactinomas by regulating apoptosis. Reducing the expression of MAPK11 or MAPK14 can reverse bromocriptine resistance in prolactinomas.


2021 ◽  
Vol 22 (22) ◽  
pp. 12399
Author(s):  
Hsin-Yen Cho ◽  
Tzu-Hsien Chuang ◽  
Sheng-Nan Wu

Solifenacin (Vesicare®, SOL), known to be a member of isoquinolines, is a muscarinic antagonist that has anticholinergic effect, and it has been beneficial in treating urinary incontinence and neurogenic detrusor overactivity. However, the information regarding the effects of SOL on membrane ionic currents is largely uncertain, despite its clinically wide use in patients with those disorders. In this study, the whole-cell current recordings revealed that upon membrane depolarization in pituitary GH3 cells, the exposure to SOL concentration-dependently increased the amplitude of M-type K+ current (IK(M)) with effective EC50 value of 0.34 μM. The activation time constant of IK(M) was concurrently shortened in the SOL presence, hence yielding the KD value of 0.55 μM based on minimal reaction scheme. As cells were exposed to SOL, the steady-state activation curve of IK(M) was shifted along the voltage axis to the left with no change in the gating charge of the current. Upon an isosceles-triangular ramp pulse, the hysteretic area of IK(M) was increased by adding SOL. As cells were continually exposed to SOL, further application of acetylcholine (1 μM) failed to modify SOL-stimulated IK(M); however, subsequent addition of thyrotropin releasing hormone (TRH, 1 μM) was able to counteract SOL-induced increase in IK(M) amplitude. In cell-attached single-channel current recordings, bath addition of SOL led to an increase in the activity of M-type K+ (KM) channels with no change in the single channel conductance; the mean open time of the channel became lengthened. In whole-cell current-clamp recordings, the SOL application reduced the firing of action potentials (APs) in GH3 cells; however, either subsequent addition of TRH or linopirdine was able to reverse SOL-mediated decrease in AP firing. In hippocampal mHippoE-14 neurons, the IK(M) was also stimulated by adding SOL. Altogether, findings from this study disclosed for the first time the effectiveness of SOL in interacting with KM channels and hence in stimulating IK(M) in electrically excitable cells, and this noticeable action appears to be independent of its antagonistic activity on the canonical binding to muscarinic receptors expressed in GH3 or mHippoE-14 cells.


2021 ◽  
Author(s):  
Junhao Zhu ◽  
Chao Tang ◽  
Zixiang Cong ◽  
Feng Yuan ◽  
Xiangming Cai ◽  
...  

Dopamine agonist (DA) is the first choice for the treatment of prolactinomas and drug resistance is unavoidable during treatment due to the heterogeneity of tumors. The two prolactinoma cell lines (GH3 cells and MMQ cells) were found to have different sensitivity and responding modes to the cabergoline (CAB) and bromocriptine (BRC). In this research, we disclosed the capability of ACT001, a derivative of parthenolide analogues, to activate AMPK by increasing the intracellular reactive oxygen species (ROS) level and AMP/ATP ratio to reverse DA-resistance through dual pathways in prolactinoma cells. The results indicated that ACT001 could reverse the CAB-resistance in GH3 cells by inhibiting the mTOR signaling pathway mainly inducing cell death through autophagy and reverse the BRC-resistance in MMQ cells by activating the EGR1 signaling pathway mainly inducing cell death through apoptosis. Our results suggested that ACT001 is a promising therapeutic compound for treating DA-resistant prolactinomas.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1367
Author(s):  
Hsin-Yen Cho ◽  
Tzu-Hsien Chuang ◽  
Sheng-Nan Wu

SM-102 (1-octylnonyl 8-[(2-hydroxyethyl)[6-oxo-6-(undecyloxy)hexyl]amino]-octanoate) is an amino cationic lipid that has been tailored for the formation of lipid nanoparticles and it is one of the essential ingredients present in the ModernaTM COVID-19 vaccine. However, to what extent it may modify varying types of plasmalemmal ionic currents remains largely uncertain. In this study, we investigate the effects of SM-102 on ionic currents either in two types of endocrine cells (e.g., rat pituitary tumor (GH3) cells and mouse Leydig tumor (MA-10) cells) or in microglial (BV2) cells. Hyperpolarization-activated K+ currents in these cells bathed in high-K+, Ca2+-free extracellular solution were examined to assess the effects of SM-102 on the amplitude and hysteresis of the erg-mediated K+ current (IK(erg)). The SM-102 addition was effective at blocking IK(erg) in a concentration-dependent fashion with a half-maximal concentration (IC50) of 108 μM, a value which is similar to the KD value (i.e., 134 μM) required for its accentuation of deactivation time constant of the current. The hysteretic strength of IK(erg) in response to the long-lasting isosceles-triangular ramp pulse was effectively decreased in the presence of SM-102. Cell exposure to TurboFectinTM 8.0 (0.1%, v/v), a transfection reagent, was able to inhibit hyperpolarization-activated IK(erg) effectively with an increase in the deactivation time course of the current. Additionally, in GH3 cells dialyzed with spermine (30 μM), the IK(erg) amplitude progressively decreased; moreover, a further bath application of SM-102 (100 μM) or TurboFectin (0.1%) diminished the current magnitude further. In MA-10 Leydig cells, the IK(erg) was also blocked by the presence of SM-102 or TurboFectin. The IC50 value for SM-102-induced inhibition of IK(erg) in MA-10 cells was 98 μM. In BV2 microglial cells, the amplitude of the inwardly rectifying K+ current was inhibited by SM-102. Taken together, the presence of SM-102 concentration-dependently inhibited IK(erg) in endocrine cells (e.g., GH3 or MA-10 cells), and such action may contribute to their functional activities, assuming that similar in vivo findings exist.


2021 ◽  
Author(s):  
Jing Guo ◽  
Qiuyue Fang ◽  
Yulou Liu ◽  
Dawei Wang ◽  
Chuzhong Li ◽  
...  

Abstract Background Recently, a hotspot mutation in prolactinoma was observed in splicing factor 3b subunit 1 (SF3B1R625H), but its functional effects and mechanisms are poorly understood. Methods Using the CRISPR/Cas9 genome editing system and rat pituitary GH3 cells, we generated heterozygous Sf3b1R625H mutant cells. Sanger and whole-genome sequencing were conducted to verify the introduction of this mutation. Transcriptome analysis was performed in SF3B1-wild-type versus mutant human prolactinoma samples and GH3 cells. Quantitative PCR and minigene reporter assays were conducted to verify aberrant splicing. The functional consequences of SF3B1R625H were evaluated in vitro and in vivo. Critical makers of epithelial-mesenchymal transition and key components of relevant signaling pathways were detected by western blot, immunohistochemistry, and immunofluorescence, and were knocked down by siRNA-mediated silencing. Results Transcriptomic analysis of prolactinomas and heterozygous mutant cells revealed that the SF3B1R625H allele led to different alterations in splicing properties, affecting different genes in different species. Consistently between rat cells and human tumor samples, mutant SF3B1 promoted aberrant splicing and the suppression of DLG1. Additionally, mutant SF3B1 with knockdown of DLG1 expression promoted cell migration, invasion, and epithelial-mesenchymal transition by activating the PI3K/Akt pathway. Conclusions Our findings elucidate a mechanism through which mutant SF3B1 promotes tumor progression and may provide a potent molecular therapeutic target for prolactinomas with the SF3B1R625H mutation.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1146
Author(s):  
Tzu-Hsien Chuang ◽  
Hsin-Yen Cho ◽  
Sheng-Nan Wu

Apocynin (aPO, 4′-Hydroxy-3′-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in excitable cells remain incompletely understood. Herein, we aimed to investigate any modifications of aPO on ionic currents in pituitary GH3 cells or murine HL-1 cardiomyocytes. In whole-cell current recordings, GH3-cell exposure to aPO effectively stimulated the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO required for its differential increase in peak or late INa in GH3 cells was estimated to be 13.2 or 2.8 μM, respectively, whereas the KD value required for its retardation in the slow component of current inactivation was 3.4 μM. The current–voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was increased in the presence of 10 μM aPO. In continued presence of aPO, further application of rufinamide or ranolazine attenuated aPO-stimulated INa. In methylglyoxal- or superoxide dismutase-treated cells, the stimulatory effect of aPO on peak INa remained effective. By using upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased hysteretic strength appearing at low or high threshold. The addition of aPO (10 μM) mildly inhibited the amplitude of erg-mediated K+ current. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone attenuated aPO-accentuated INa. Altogether, this study provides a distinctive yet unidentified finding that, despite its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating and voltage-dependent hysteresis of INa in electrically excitable cells. The interaction of aPO with ionic currents may, at least in part, contribute to the underlying mechanisms through which it affects neuroendocrine, endocrine or cardiac function.


Author(s):  
Cuiqi Zhou ◽  
Stephen Shen ◽  
Rosemary Moran ◽  
Nan Deng ◽  
Eduardo Marbán ◽  
...  

Abstract Context The identification and biological actions of pituitary-derived exosomes remain elusive. Objective This work aimed to validate production of exosomes derived from human and rat pituitary and elucidate their actions. Methods Isolated extracellular vesicles (EVs) were analyzed by Nanoparticle Tracking Analysis (NTA) and expressed exosomal markers detected by Western blot, using nonpituitary fibroblast FR and myoblast H9C2 cells as controls. Exosome inhibitor GW4869 was employed to detect attenuated EV release. Exosomal RNA contents were characterized by RNA sequencing. In vitro and in vivo hepatocyte signaling alterations responding to GH1-derived exosomes (GH1-exo) were delineated by mRNA sequencing. GH1-exo actions on protein synthesis, cAMP (3′,5′-cyclic adenosine 5′-monophosphate) response, cell motility, and metastases were assessed. Results NTA, exosomal marker detection, and GW4869 attenuated EV release, confirming the exosomal identity of pituitary EVs. Hydrocortisone increased exosome secretion in GH1 and GH3 cells, suggesting a stress-associated response. Exosomal RNA contents showed profiles distinct for pituitary cells, and rat primary hepatocytes exposed to GH1-exo exhibited transcriptomic alterations distinct from those elicited by growth hormone or prolactin. Intravenous GH1-exo injection into rats attenuated hepatic Eif2ak2 and Atf4 mRNA expression, both involved in cAMP responses and amino acid biosynthesis. GH1-exo suppressed protein synthesis and forskolin-induced cAMP levels in hepatocytes. GH1-exo–treated HCT116 cells showed dysregulated p53 and mitogen-activated protein kinase (MAPK) pathways and attenuated motility of malignant HCT116 cells, and decreased tumor metastases in nude mice harboring splenic HCT116 implants. Conclusion Our findings elucidate biological actions of somatotroph-derived exosomes and implicate exosomes as nonhormonal pituitary-derived messengers.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 636
Author(s):  
Hung-Tsung Hsiao ◽  
Guan-Ling Lu ◽  
Yen-Chin Liu ◽  
Sheng-Nan Wu

PT-2385 is currently regarded as a potent and selective inhibitor of hypoxia-inducible factor-2α (HIF-2α), with potential antineoplastic activity. However, the membrane ion channels changed by this compound are obscure, although it is reasonable to assume that the compound might act on surface membrane before entering the cell´s interior. In this study, we intended to explore whether it and related compounds make any adjustments to the plasmalemmal ionic currents of pituitary tumor (GH3) cells and human 13-06-MG glioma cells. Cell exposure to PT-2385 suppressed the peak or late amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner, with IC50 values of 8.1 or 2.2 µM, respectively, while the KD value in PT-2385-induced shortening in the slow component of IK(DR) inactivation was estimated to be 2.9 µM. The PT-2385-mediated block of IK(DR) in GH3 cells was little-affected by the further application of diazoxide, cilostazol, or sorafenib. Increasing PT-2385 concentrations shifted the steady-state inactivation curve of IK(DR) towards a more hyperpolarized potential, with no change in the gating charge of the current, and also prolonged the time-dependent recovery of the IK(DR) block. The hysteretic strength of IK(DR) elicited by upright or inverted isosceles-triangular ramp voltage was decreased during exposure to PT-2385; meanwhile, the activation energy involved in the gating of IK(DR) elicitation was noticeably raised in its presence. Alternatively, the presence of PT-2385 in human 13-06-MG glioma cells effectively decreased the amplitude of IK(DR). Considering all of the experimental results together, the effects of PT-2385 on ionic currents demonstrated herein could be non-canonical and tend to be upstream of the inhibition of HIF-2α. This action therefore probably contributes to down-streaming mechanisms through the changes that it or other structurally resemblant compounds lead to in the perturbations of the functional activities of pituitary cells or neoplastic astrocytes, in the case that in vivo observations occur.


Sign in / Sign up

Export Citation Format

Share Document