Crystalline and amorphous silica differentially regulate the cyclooxygenase-prostaglandin pathway in pulmonary fibroblasts: implications for pulmonary fibrosis

2005 ◽  
Vol 288 (6) ◽  
pp. L1010-L1016 ◽  
Author(s):  
Katherine M. A. O'Reilly ◽  
Richard P. Phipps ◽  
Thomas H. Thatcher ◽  
Beth A. Graf ◽  
John Van Kirk ◽  
...  

Inhalation of crystalline (CS) and amorphous silica (AS) results in human pulmonary inflammation. However, silicosis develops only following CS exposure, and the pathogenic mechanisms are poorly understood. This report describes the differential abilities of CS and AS to directly upregulate the early inflammatory mediator COX-2, the recently identified prostaglandin E (PGE) synthase and the downstream mediator PGE2 in primary human lung fibroblasts. Increased cyclooxygenase (COX)-2 gene transcription and protein production were demonstrated by ribonuclease protection assay, Western blot analysis, and immunocytochemistry. In each case the ability of AS to induce COX-2 exceeded that of CS. Similarly, downstream of COX-2, production of the antifibrotic prostaglandin PGE2 was induced in a dose-dependent fashion, but AS was significantly more potent (maximal production: CS = 4,710 pg/ml and AS = 7,651 pg/ml). These increases in COX-2 and PGE2 were preceded by induction of the PGE2 synthase protein, demonstrating the potential role of this novel molecule in silica-mediated inflammation. There was specificity of induction of prostaglandins, as PGF2α, but not PGD2, was induced. Using specific COX-2 inhibitors, we showed increased PG production to be dependent on the COX-2 enzyme. Furthermore, stimulation of fibroblasts was particle specific, as silica but not carbon black resulted in fibroblast activation. These results demonstrate that silica can directly stimulate human lung fibroblasts to produce key inflammatory enzymes and prostaglandins. Moreover, they suggest a mechanism to explain the differing fibrogenic potential of CS and AS. The molecules COX-2, PGE synthase, and PGE2 are identified as effectors in silicosis.

2004 ◽  
Vol 287 (5) ◽  
pp. L981-L991 ◽  
Author(s):  
Christine A. Martey ◽  
Stephen J. Pollock ◽  
Chantal K. Turner ◽  
Katherine M. A. O'Reilly ◽  
Carolyn J. Baglole ◽  
...  

Cigarette smoking can lead to many human pathologies including cardiovascular and respiratory disease. Recent studies have defined a role for fibroblasts in the development of colon cancer. Moreover, fibroblasts are now thought of as key “sentinel” cells that initiate inflammation by releasing proinflammatory mediators including prostaglandins (PGs). Pathological overexpression of cyclooxygenase-2 (COX-2) and excess eicosanoid production are found in the early stages of carcinogenesis. By promoting chronic inflammation, COX-2 and eicosanoid production may actually cause a predisposition to malignancy. Furthermore, the associated inflammation induced by production of these mediators is central to the pathogenesis of chronic obstructive pulmonary disease. Little is known of the responses of normal lung fibroblasts to cigarette smoke, despite their abundance. We report herein that normal human lung fibroblasts, when exposed to cigarette smoke extract, induce COX-2 with concurrent synthesis of prostaglandin E2 (PGE2). The mechanisms by which cigarette-derived toxicants lead to increased COX-2 levels and PGE2 synthesis include increases in steady-state COX-2 mRNA levels (approximately four- to fivefold), phosphorylation of ERK1/2, and nuclear translocation of the p50 and p65 subunits of the transcription factor NF-κB, which are important elements in COX-2 expression. Furthermore, there was a dramatic 25-fold increase in microsomal prostaglandin E synthase, the key enzyme involved in the production of PGE2. We propose that normal human lung fibroblasts, when exposed to cigarette smoke constituents, elicit COX-2 expression with consequent prostaglandin synthesis, thus creating a proinflammatory environment. This chronic inflammatory state may act as one of the first steps towards epithelial transformation.


2005 ◽  
Vol 289 (3) ◽  
pp. L391-L399 ◽  
Author(s):  
C. A. Martey ◽  
C. J. Baglole ◽  
T. A. Gasiewicz ◽  
P. J. Sime ◽  
R. P. Phipps

Cigarette smoking can lead to chronic lung inflammation and lung cancer. Chronic inflammation, associated with expression of cyclooxygenase-2 (COX-2) and prostaglandins, predisposes to malignancy. We recently demonstrated that human lung fibroblasts are activated by cigarette smoke to express COX-2 and prostaglandin E2 (PGE2). Little is known about the mechanism whereby smoke activates human lung fibroblasts to produce proinflammatory mediators. Herein, we report the central role of the aryl hydrocarbon receptor (AHR) in cigarette smoke extract (CSE)-induced COX-2, microsomal PGE2 synthase (mPGES), and PGE2 production in human lung fibroblasts. Western blot analysis revealed that primary strains of human lung fibroblasts express AHR and aryl hydrocarbon nuclear translocator protein, supporting the possibility that smoke activates lung fibroblasts through this pathway. Experiments were subsequently performed to determine whether the AHR was activated by CSE. Immunocytochemistry and EMSA analysis revealed that CSE induced nuclear translocation of the AHR in human lung fibroblasts. CSE decreased protein levels of the AHR, consistent with AHR ligand-induced proteosome-mediated degradation. CSE also induced mPGES-1 and COX-2 protein and increased PGE2 production. Treatment of human fibroblasts with AHR antagonists in the presence of CSE inhibited AHR nuclear translocation as well as COX-2, mPGES-1, and PGE2 production. These data indicate that the AHR pathway plays an important role in cigarette smoke-mediated COX-2 and PG production in human lung fibroblasts and may contribute to tobacco-associated inflammation and lung disease.


2013 ◽  
Vol 304 (11) ◽  
pp. L774-L781 ◽  
Author(s):  
David H. McMillan ◽  
Collynn F. Woeller ◽  
Thomas H. Thatcher ◽  
Sherry L. Spinelli ◽  
Sanjay B. Maggirwar ◽  
...  

Lung inflammation can result from exposure to multiple types of inflammatory stimuli. Fibroblasts, key structural cells in the lung that are integral to inflammation and wound healing, produce inflammatory mediators after exposure to stimuli such as IL-1β. We and others have shown that the NF-κB member RelB has anti-inflammatory properties in mice. Little is known, however, about the anti-inflammatory role of RelB in human cells and how it functions. MicroRNAs (miRNAs), a novel class of small, noncoding RNAs, can mediate inflammatory signaling pathways, including NF-κB, through regulation of target gene expression. Our goal was to analyze the anti-inflammatory properties of RelB in human lung fibroblasts. We hypothesized that RelB regulates inflammatory mediator production in lung fibroblasts in part through a mechanism involving miRNAs. To accomplish this, we transfected human lung fibroblasts with a plasmid encoding RelB and small interfering (si)RNA targeting RelB mRNA to overexpress and downregulate RelB, respectively. IL-1β, a powerful proinflammatory stimulus, was used to induce NF-κB-driven inflammatory responses. RelB overexpression reduced IL-1β-induced cyclooxygenase (Cox)-2, PGE2, and cytokine production, and RelB downregulation increased Cox-2 expression and PGE2 production. Furthermore, RelB overexpression increased IL-1β-induced expression of miRNA-146a, an NF-κB-dependent miRNA with anti-inflammatory properties, whereas RelB downregulation reduced miRNA-146a. miR-146a overexpression ablated the effects of RelB downregulation on IL-1β-induced Cox-2, PGE2, and IL-6 production, suggesting that RelB mediates IL-1β-induced inflammatory mediator production in lung fibroblasts through miRNA-146a. RelB and miRNA-146a may therefore be new therapeutic targets in the treatment of lung inflammation caused by various agents and conditions.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1026 ◽  
Author(s):  
Sorina Voicu ◽  
Mihaela Balas ◽  
Miruna Stan ◽  
Bogdan Trică ◽  
Andreea Serban ◽  
...  

Silica nanoparticles (SiO2 NPs) represent environmentally born nanomaterials that are used in multiple biomedical applications. Our aim was to study the amorphous SiO2 NP-induced inflammatory response in MRC-5 human lung fibroblasts up to 72 hours of exposure. The intracellular distribution of SiO2 NPs was measured by transmission electron microscopy (TEM). The lactate dehydrogenase (LDH) test was used for cellular viability evaluation. We have also investigated the lysosomes formation, protein expression of interleukins (IL-1β, IL-2, IL-6, IL-8, and IL-18), COX-2, Nrf2, TNF-α, and nitric oxide (NO) production. Our results showed that the level of lysosomes increased in time after exposure to the SiO2 NPs. The expressions of interleukins and COX-2 were upregulated, whereas the expressions and activities of MMP-2 and MMP-9 decreased in a time-dependent manner. Our findings demonstrated that the exposure of MRC-5 cells to 62.5 µg/mL of SiO2 NPs induced an inflammatory response.


2016 ◽  
Vol 310 (11) ◽  
pp. L1166-L1176 ◽  
Author(s):  
Eline M. van Dijk ◽  
Mark H. Menzen ◽  
Anita I. R. Spanjer ◽  
Laurens D. C. Middag ◽  
Corry-Anke A. Brandsma ◽  
...  

COPD is a progressive chronic lung disease characterized by pulmonary inflammation. Several recent studies indicate aberrant expression of WNT ligands and Frizzled receptors in the disease. For example, WNT-5A/B ligand expression was recently found to be increased in lung fibroblasts of COPD patients. However, possible effects of WNT-5A and WNT-5B on inflammation have not been investigated yet. In this study, we assessed the regulation of inflammatory cytokine release in response to WNT-5A/B signaling in human lung fibroblasts. Primary human fetal lung fibroblasts (MRC-5), and primary lung fibroblasts from COPD patients and non-COPD controls were treated with recombinant WNT-5A or WNT-5B to assess IL-6 and CXCL8 cytokine secretion and gene expression levels. Following WNT-5B, and to a lesser extent WNT-5A stimulation, fibroblasts showed increased IL-6 and CXCL8 cytokine secretion and mRNA expression. WNT-5B-mediated IL-6 and CXCL8 release was higher in fibroblasts from COPD patients than in non-COPD controls. In MRC-5 fibroblasts, WNT-5B-induced CXCL8 release was mediated primarily via the Frizzled-2 receptor and TAK1 signaling, whereas canonical β-catenin signaling was not involved. In further support of noncanonical signaling, we showed activation of JNK, p38, and p65 NF-κB by WNT-5B. Furthermore, inhibition of JNK and p38 prevented WNT-5B-induced IL-6 and CXCL8 secretion, whereas IKK inhibition prevented CXCL8 secretion only, indicating distinct pathways for WNT-5B-induced IL-6 and CXCL8 release. WNT-5B induces IL-6 and CXCL8 secretion in pulmonary fibroblasts. In summary, WNT-5B mediates this via Frizzled-2 and TAK1. As WNT-5 signaling is increased in COPD, this WNT-5-induced inflammatory response could represent a therapeutic target.


2006 ◽  
Vol 290 (6) ◽  
pp. L1097-L1103 ◽  
Author(s):  
Murielle Cohen ◽  
Sylvain Marchand-Adam ◽  
Véronique Lecon-Malas ◽  
Joëlle Marchal-Somme ◽  
Anne Boutten ◽  
...  

Oncostatin M (OSM) is a IL-6 family cytokine locally produced in acute lung injury. Its profibrotic properties suggest a role in lung wound repair. Hepatocyte growth factor (HGF), produced by fibroblasts, is involved in pulmonary epithelial repair. We investigated the role of OSM in HGF synthesis by human lung fibroblasts. We showed that OSM upregulated HGF mRNA in MRC5 cells and in human lung fibroblasts, whereas IL-6 and leukemia inhibitory factor did not. OSM induced HGF secretion to a similar extent as IL-1β in both a time- and dose-dependent manner. HGF was released in its cleaved mature form, and its secretion was completely inhibited in the presence of cycloheximide, indicating a de novo protein synthesis. OSM in combination with prostaglandin E2, a powerful HGF inductor, led to an additive effect. OSM and indomethacin in combination further increased HGF secretion. This could be explained, at least in part, by a moderate upregulation of specific OSM receptor β mRNA expression through cyclooxygenase inhibition.These results demonstrate that OSM-induced HGF synthesis did not involve a PGE2pathway. OSM-induced HGF secretion was inhibited by PD-98059 (a specific pharmacological inhibitor of ERK1/2), SB-203580 (a p38 MAPK inhibitor), and SP-600125 (a JNK inhibitor) by 70, 82, and 100%, respectively, whereas basal HGF secretion was only inhibited by SP-600125 by 30%. Our results demonstrate a specific upregulation of HGF synthesis by OSM, most likely through a MAPK pathway, and support the suggestion that OSM may participate in lung repair through HGF production.


2016 ◽  
Vol 311 (5) ◽  
pp. L855-L867 ◽  
Author(s):  
Shannon H. Lacy ◽  
Collynn F. Woeller ◽  
Thomas H. Thatcher ◽  
Krishna Rao Maddipati ◽  
Kenneth V. Honn ◽  
...  

Human lung fibroblasts (HLFs) act as innate immune sentinel cells that amplify the inflammatory response to injurious stimuli. Here, we use targeted lipidomics to explore the hypothesis that HLFs also play an active role in the resolution of inflammation. We detected cyclooxygenase-2 (COX-2)-dependent production of both proinflammatory and proresolving prostaglandins (PGs) in conditioned culture medium from HLFs treated with a proinflammatory stimulus, IL-1β. Among the proresolving PGs in the HLF lipidome were several known ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor whose activation in the lung yields potent anti-inflammatory, antifibrotic, and proresolving effects. Next, we used a cell-based luciferase reporter to confirm the ability of HLF supernatants to activate PPARγ, demonstrating, for the first time, that primary HLFs activated with proinflammatory IL-1β or cigarette smoke extract produce functional PPARγ ligands; this phenomenon is temporally regulated, COX-2- and lipocalin-type PGD synthase-dependent, and enhanced by arachidonic acid supplementation. Finally, we used luciferase reporter assays to show that several of the PGs in the lipidome of activated HLFs independently activate PPARγ and/or inhibit NFκB. These results indicate that HLFs, as immune sentinels, regulate both proinflammatory and proresolving responses to injurious stimuli. This novel endogenous resolution pathway represents a new therapeutic target for globally important inflammatory diseases such as chronic obstructive pulmonary disease.


Sign in / Sign up

Export Citation Format

Share Document