Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer

2004 ◽  
Vol 287 (5) ◽  
pp. L981-L991 ◽  
Author(s):  
Christine A. Martey ◽  
Stephen J. Pollock ◽  
Chantal K. Turner ◽  
Katherine M. A. O'Reilly ◽  
Carolyn J. Baglole ◽  
...  

Cigarette smoking can lead to many human pathologies including cardiovascular and respiratory disease. Recent studies have defined a role for fibroblasts in the development of colon cancer. Moreover, fibroblasts are now thought of as key “sentinel” cells that initiate inflammation by releasing proinflammatory mediators including prostaglandins (PGs). Pathological overexpression of cyclooxygenase-2 (COX-2) and excess eicosanoid production are found in the early stages of carcinogenesis. By promoting chronic inflammation, COX-2 and eicosanoid production may actually cause a predisposition to malignancy. Furthermore, the associated inflammation induced by production of these mediators is central to the pathogenesis of chronic obstructive pulmonary disease. Little is known of the responses of normal lung fibroblasts to cigarette smoke, despite their abundance. We report herein that normal human lung fibroblasts, when exposed to cigarette smoke extract, induce COX-2 with concurrent synthesis of prostaglandin E2 (PGE2). The mechanisms by which cigarette-derived toxicants lead to increased COX-2 levels and PGE2 synthesis include increases in steady-state COX-2 mRNA levels (approximately four- to fivefold), phosphorylation of ERK1/2, and nuclear translocation of the p50 and p65 subunits of the transcription factor NF-κB, which are important elements in COX-2 expression. Furthermore, there was a dramatic 25-fold increase in microsomal prostaglandin E synthase, the key enzyme involved in the production of PGE2. We propose that normal human lung fibroblasts, when exposed to cigarette smoke constituents, elicit COX-2 expression with consequent prostaglandin synthesis, thus creating a proinflammatory environment. This chronic inflammatory state may act as one of the first steps towards epithelial transformation.

2005 ◽  
Vol 289 (3) ◽  
pp. L391-L399 ◽  
Author(s):  
C. A. Martey ◽  
C. J. Baglole ◽  
T. A. Gasiewicz ◽  
P. J. Sime ◽  
R. P. Phipps

Cigarette smoking can lead to chronic lung inflammation and lung cancer. Chronic inflammation, associated with expression of cyclooxygenase-2 (COX-2) and prostaglandins, predisposes to malignancy. We recently demonstrated that human lung fibroblasts are activated by cigarette smoke to express COX-2 and prostaglandin E2 (PGE2). Little is known about the mechanism whereby smoke activates human lung fibroblasts to produce proinflammatory mediators. Herein, we report the central role of the aryl hydrocarbon receptor (AHR) in cigarette smoke extract (CSE)-induced COX-2, microsomal PGE2 synthase (mPGES), and PGE2 production in human lung fibroblasts. Western blot analysis revealed that primary strains of human lung fibroblasts express AHR and aryl hydrocarbon nuclear translocator protein, supporting the possibility that smoke activates lung fibroblasts through this pathway. Experiments were subsequently performed to determine whether the AHR was activated by CSE. Immunocytochemistry and EMSA analysis revealed that CSE induced nuclear translocation of the AHR in human lung fibroblasts. CSE decreased protein levels of the AHR, consistent with AHR ligand-induced proteosome-mediated degradation. CSE also induced mPGES-1 and COX-2 protein and increased PGE2 production. Treatment of human fibroblasts with AHR antagonists in the presence of CSE inhibited AHR nuclear translocation as well as COX-2, mPGES-1, and PGE2 production. These data indicate that the AHR pathway plays an important role in cigarette smoke-mediated COX-2 and PG production in human lung fibroblasts and may contribute to tobacco-associated inflammation and lung disease.


2016 ◽  
Vol 311 (5) ◽  
pp. L855-L867 ◽  
Author(s):  
Shannon H. Lacy ◽  
Collynn F. Woeller ◽  
Thomas H. Thatcher ◽  
Krishna Rao Maddipati ◽  
Kenneth V. Honn ◽  
...  

Human lung fibroblasts (HLFs) act as innate immune sentinel cells that amplify the inflammatory response to injurious stimuli. Here, we use targeted lipidomics to explore the hypothesis that HLFs also play an active role in the resolution of inflammation. We detected cyclooxygenase-2 (COX-2)-dependent production of both proinflammatory and proresolving prostaglandins (PGs) in conditioned culture medium from HLFs treated with a proinflammatory stimulus, IL-1β. Among the proresolving PGs in the HLF lipidome were several known ligands for peroxisome proliferator-activated receptor-γ (PPARγ), a transcription factor whose activation in the lung yields potent anti-inflammatory, antifibrotic, and proresolving effects. Next, we used a cell-based luciferase reporter to confirm the ability of HLF supernatants to activate PPARγ, demonstrating, for the first time, that primary HLFs activated with proinflammatory IL-1β or cigarette smoke extract produce functional PPARγ ligands; this phenomenon is temporally regulated, COX-2- and lipocalin-type PGD synthase-dependent, and enhanced by arachidonic acid supplementation. Finally, we used luciferase reporter assays to show that several of the PGs in the lipidome of activated HLFs independently activate PPARγ and/or inhibit NFκB. These results indicate that HLFs, as immune sentinels, regulate both proinflammatory and proresolving responses to injurious stimuli. This novel endogenous resolution pathway represents a new therapeutic target for globally important inflammatory diseases such as chronic obstructive pulmonary disease.


2005 ◽  
Vol 288 (6) ◽  
pp. L1010-L1016 ◽  
Author(s):  
Katherine M. A. O'Reilly ◽  
Richard P. Phipps ◽  
Thomas H. Thatcher ◽  
Beth A. Graf ◽  
John Van Kirk ◽  
...  

Inhalation of crystalline (CS) and amorphous silica (AS) results in human pulmonary inflammation. However, silicosis develops only following CS exposure, and the pathogenic mechanisms are poorly understood. This report describes the differential abilities of CS and AS to directly upregulate the early inflammatory mediator COX-2, the recently identified prostaglandin E (PGE) synthase and the downstream mediator PGE2 in primary human lung fibroblasts. Increased cyclooxygenase (COX)-2 gene transcription and protein production were demonstrated by ribonuclease protection assay, Western blot analysis, and immunocytochemistry. In each case the ability of AS to induce COX-2 exceeded that of CS. Similarly, downstream of COX-2, production of the antifibrotic prostaglandin PGE2 was induced in a dose-dependent fashion, but AS was significantly more potent (maximal production: CS = 4,710 pg/ml and AS = 7,651 pg/ml). These increases in COX-2 and PGE2 were preceded by induction of the PGE2 synthase protein, demonstrating the potential role of this novel molecule in silica-mediated inflammation. There was specificity of induction of prostaglandins, as PGF2α, but not PGD2, was induced. Using specific COX-2 inhibitors, we showed increased PG production to be dependent on the COX-2 enzyme. Furthermore, stimulation of fibroblasts was particle specific, as silica but not carbon black resulted in fibroblast activation. These results demonstrate that silica can directly stimulate human lung fibroblasts to produce key inflammatory enzymes and prostaglandins. Moreover, they suggest a mechanism to explain the differing fibrogenic potential of CS and AS. The molecules COX-2, PGE synthase, and PGE2 are identified as effectors in silicosis.


2007 ◽  
Vol 8 (1) ◽  
Author(s):  
Giampiero La Rocca ◽  
Rita Anzalone ◽  
Francesca Magno ◽  
Felicia Farina ◽  
Francesco Cappello ◽  
...  

2002 ◽  
Vol 16 (3) ◽  
pp. 267-273 ◽  
Author(s):  
F. Leira ◽  
M.C. Louzao ◽  
J.M. Vieites ◽  
L.M. Botana ◽  
M.R. Vieytes

Sign in / Sign up

Export Citation Format

Share Document