scholarly journals Central command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat

2016 ◽  
Vol 121 (4) ◽  
pp. 932-943 ◽  
Author(s):  
Kanji Matsukawa ◽  
Kei Ishii ◽  
Ryota Asahara ◽  
Mitsuhiro Idesako

Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade.

2010 ◽  
Vol 298 (4) ◽  
pp. R1056-R1060 ◽  
Author(s):  
Rohit Ramchandra ◽  
Anna M. D. Watson ◽  
Sally G. Hood ◽  
Clive N. May

To determine the effect of irbesartan treatment on resting levels and arterial baroreflex control of cardiac sympathetic nerve activity (CSNA) in heart failure (HF), we studied conscious normal sheep and sheep with HF induced by rapid ventricular pacing for 8–10 wk ( n = 7 per group). In HF, there is a large increase in CSNA that is detrimental to outcome. The causes of this increase in CSNA and the effect of angiotensin receptor blockers on CSNA in HF are unclear. CSNA, arterial blood pressure, heart rate (HR), and arterial baroreflex curves were recorded during a resting period and after 90 min of irbesartan infusion (12 mg·kg−1·h−1 iv). This dose of irbesartan abolished the pressor response to intravenous ANG II infusion but caused only a slight decrease in the pressor response to centrally administered ANG II. In HF, there was a large increase in CSNA (from 44 ± 3 to 87 ± 3 bursts/100 heartbeats). Irbesartan reduced arterial pressure in the normal and HF groups, but the usual baroreflex-mediated increases in CSNA and HR were prevented. This resulted from a significant leftward shift in the CSNA and HR baroreflex curves in both groups. Irbesartan also decreased the sensitivity of the arterial baroreflex control of CSNA. Short-term treatment with an angiotensin receptor blocker, at a dose that abolished the response to circulating, but not central, ANG II, prevented the reflex increase in CSNA in response to the drug-induced fall in arterial pressure.


2009 ◽  
Vol 296 (4) ◽  
pp. H1157-H1163 ◽  
Author(s):  
Hirotsugu Tsuchimochi ◽  
Shawn G. Hayes ◽  
Jennifer L. McCord ◽  
Marc P. Kaufman

Both static and dynamic exercise are known to increase cardiac pump function as well as arterial blood pressure. Feedforward control by central command and feedback control by the exercise pressor reflex are thought to be the neural mechanisms causing these effects during exercise. It remains unknown as to how each mechanism activates cardiac sympathetic nerve activity (CSNA) during exercise, especially at its onset. Thus we examined the response of CSNA to stimulation of the mesencephalic locomotor region (MLR, i.e., central command) and to static muscle contraction of the triceps surae muscles or stretch of the calcaneal tendon in decerebrate cats. We found that MLR stimulation immediately increased CSNA, which was followed by a gradual increase in heart rate, mean arterial pressure, and ventral root activity in a stimulus intensity-dependent manner. The latency of the increase in CSNA from the onset of MLR stimulation ranged from 67 to 387 ms. Both static contraction and tendon stretch also rapidly increased CSNA. Their latency from the development of tension in response to ventral root stimulation ranged from 78 to 670 ms. These findings suggest that both central command and the muscle mechanoreflex play a role in controlling cardiac sympathetic outflow at the onset of exercise.


2007 ◽  
Vol 293 (1) ◽  
pp. H798-H804 ◽  
Author(s):  
A. M. D. Watson ◽  
S. G. Hood ◽  
R. Ramchandra ◽  
R. M. McAllen ◽  
C. N. May

Increased sympathetic drive to the heart worsens prognosis in heart failure, but the level of cardiac sympathetic nerve activity (CSNA) has been assessed only by indirect methods, which do not permit testing of whether its control by arterial baroreceptors is defective. To do this, CSNA was measured directly in 16 female sheep, 8 of which had been ventricularly paced at 200–220 beats/min for 4–6 wk, until their ejection fraction fell to between 35 and 40%. Recording electrodes were surgically implanted in the cardiac sympathetic nerves, and after 3 days' recovery the responses to intravenous phenylephrine and nitroprusside infusions were measured in conscious sheep. Electrophysiological recordings showed that resting CSNA (bursts/100 heartbeats) was significantly elevated in heart-failure sheep (89 ± 3) compared with normal animals (46 ± 6; P < 0.001). This increased CSNA was not accompanied by any increase in the low-frequency power of heart-rate variability. The baroreceptor-heart rate reflex was significantly depressed in heart failure (maximum gain −3.29 ± 0.56 vs. −5.34 ± 0.66 beats·min−1·mmHg−1 in normal animals), confirming published findings. In contrast, the baroreflex control of CSNA was undiminished (maximum gain in heart failure −6.33 ± 1.06 vs. −6.03 ± 0.95%max/mmHg in normal sheep). Direct recordings in a sheep model of heart failure thus show that resting CSNA is strikingly increased, but this is not due to defective control by arterial baroreceptors.


2018 ◽  
Vol 315 (2) ◽  
pp. H340-H347 ◽  
Author(s):  
Rohit Ramchandra ◽  
Sally G. Hood ◽  
Daniel Xing ◽  
Gavin W. Lambert ◽  
Clive N. May

Patients with heart failure (HF) have increased levels of cardiac norepinephrine (NE) spillover, which is an independent predictor of mortality. We hypothesized that this increase in NE spillover in HF depends not only on increases in sympathetic nerve activity (SNA) but also on changes in the mechanisms controlling NE release and reuptake. Such changes would lead to differences between the increases in directly recorded SNA and NE spillover to the heart in HF. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA (CSNA). In addition, arterial pressure and cardiac NE spillover were determined. In HF, the levels of both CSNA (102 ± 8 vs. 45 ± 8 bursts/min, P < 0.05) and cardiac NE spillover (21.6 ± 3.8 vs. 3.9 ± 0.8 pmol/min, P < 0.05) were significantly higher than in normal control animals. In HF, baroreflex control of cardiac NE spillover was impaired, and when CSNA was abolished by increasing arterial pressure, there was no reduction in cardiac NE spillover. A decrease in cardiac filling pressures in the HF group led to a significant increase in CSNA, but it significantly decreased cardiac NE spillover. In HF, the levels of cardiac NE spillover were enhanced above those expected from the high level of SNA, suggesting that changes in mechanisms controlling NE release and reuptake further increase the high level of NE at the heart, which will act to enhance the deleterious effects of increased CSNA in HF. NEW & NOTEWORTHY This is the first study, to our knowledge, to compare direct recordings of cardiac sympathetic nerve activity with simultaneously measured cardiac norepinephrine (NE) spillover. Our results indicate that in heart failure, increased cardiac sympathetic nerve activity is a major contributor to the increased NE spillover. In addition, there is enhanced NE spillover for the levels of synaptic nerve activity.


2005 ◽  
Vol 187 (2) ◽  
pp. 275-281 ◽  
Author(s):  
C J Charles ◽  
D L Jardine ◽  
M G Nicholls ◽  
A M Richards

The sympathetic nervous system and adrenomedullin (AM) both participate in the regulation of cardiac and circulatory function but their interaction remains uncertain. We have examined the effects of AM on cardiac sympathetic nerve activity (CSNA) and hemodynamics and contrasted these effects with pressure-matched nitro-prusside (NP) administration in normal conscious sheep. Compared with vehicle control, arterial pressure fell similarly with AM (P=0.04) and NP (P<0.001). Heart rate rose in response to both AM (P<0.001) and NP (P=0.002) but the rise with AM was significantly greater than that induced by NP (P<0.001). Cardiac output increased in response to AM compared with both control and NP (both P<0.001). CSNA burst frequency (bursts/min) were increased in response to both AM (P<0.001) and NP (P=0.005) with the rise in burst frequency being greater with AM compared with NP (P<0.001). CSNA burst area/min was also raised by both AM (P=0.03) and NP (P=0.002) with a trend for burst area being greater with AM than NP (P=0.07). CSNA burst incidence (bursts/100 beats) showed no significant differences between any treatment day. In conclusion, we have demonstrated that AM is associated with a greater increase in CSNA and heart rate for a given change in arterial pressure than seen with the classic balanced vasodilator NP.


Sign in / Sign up

Export Citation Format

Share Document