baroreflex control
Recently Published Documents


TOTAL DOCUMENTS

819
(FIVE YEARS 42)

H-INDEX

56
(FIVE YEARS 4)

2021 ◽  
Vol 22 (22) ◽  
pp. 12305
Author(s):  
Julia Shanks ◽  
Rohit Ramchandra

The renin–angiotensin–aldosterone system (RAAS) impacts cardiovascular homeostasis via direct actions on peripheral blood vessels and via modulation of the autonomic nervous system. To date, research has primarily focused on the actions of the RAAS on the sympathetic nervous system. Here, we review the critical role of the RAAS on parasympathetic nerve function during normal physiology and its role in cardiovascular disease, focusing on hypertension. Angiotensin (Ang) II receptors are present throughout the parasympathetic nerves and can modulate vagal activity via actions at the level of the nerve endings as well as via the circumventricular organs and as a neuromodulator acting within brain regions. There is tonic inhibition of cardiac vagal tone by endogenous Ang II. We review the actions of Ang II via peripheral nerve endings as well as via central actions on brain regions. We review the evidence that Ang II modulates arterial baroreflex function and examine the pathways via which Ang II can modulate baroreflex control of cardiac vagal drive. Although there is evidence that Ang II can modulate parasympathetic activity and has the potential to contribute to impaired baseline levels and impaired baroreflex control during hypertension, the exact central regions where Ang II acts need further investigation. The beneficial actions of angiotensin receptor blockers in hypertension may be mediated in part via actions on the parasympathetic nervous system. We highlight important unknown questions about the interaction between the RAAS and the parasympathetic nervous system and conclude that this remains an important area where future research is needed.


2021 ◽  
Author(s):  
Hossein Sharifi ◽  
Charles K Mann ◽  
Jonathan F Wenk ◽  
Kenneth Campbell

Multiscale models of the cardiovascular system can provide new insights into physiological and pathological processes. Models that incorporate molecular-level effects may be particularly useful for clinical applications because they can predict the functional consequences of pharmaceuticals that modulate the properties of molecules and/or the rate at which they undergo reactions. PyMyoVent is a computer model that bridges from molecular to organ-level function and simulates a left ventricle pumping blood through the systemic circulation. Initial work with PyMyoVent focused on the End Systolic Pressure Volume Relationship and ranked potential therapeutic strategies by their impact on contractility. This manuscript extends PyMyoVent by adding baroreflex control of arterial pressure. The reflex algorithm is inspired by the underlying biology. It uses an afferent signal derived from arterial pressure to drive a kinetic model that mimics the net result of neural processing in the medulla and cell-level responses to autonomic drive. The kinetic model outputs control signals that are constrained between limits that represent maximum parasympathetic and maximum sympathetic drive and which modulate heart rate, intracellular Ca2+ dynamics, the molecular-level function of both the thick and the thin myofilaments, and vascular tone. Simulations show that the algorithm can regulate mean arterial pressure at set-points ranging from ~30 to ~150 mmHg as well as maintaining arterial pressure when challenged by rapid changes in blood volume or sudden increases in aortic resistance.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Katrin Altosaar ◽  
Poornima Balaji ◽  
Richard A. Bond ◽  
David B. Bylund ◽  
Susanna Cotecchia ◽  
...  

The nomenclature of the Adrenoceptors has been agreed by the NC-IUPHAR Subcommittee on Adrenoceptors [60, 186]. Adrenoceptors, α1 The three α1-adrenoceptor subtypes α1A, α1B and α1D are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. -(-)phenylephrine, methoxamine and cirazoline are agonists and prazosin and doxazosin antagonists considered selective for α1- relative to α2-adrenoceptors. [3H]prazosin and [125I]HEAT (BE2254) are relatively selective radioligands. S(+)-niguldipine also has high affinity for L-type Ca2+ channels. Fluorescent derivatives of prazosin (Bodipy FLprazosin- QAPB) are used to examine cellular localisation of α1-adrenoceptors. α1-Adrenoceptor agonists are used as nasal decongestants; antagonists to treat symptoms of benign prostatic hyperplasia (alfuzosin, doxazosin, terazosin, tamsulosin and silodosin, with the last two compounds being α1A-adrenoceptor selective and claiming to relax bladder neck tone with less hypotension); and to a lesser extent hypertension (doxazosin, terazosin). The α1- and β2-adrenoceptor antagonist carvedilol is used to treat congestive heart failure, although the contribution of α1-adrenoceptor blockade to the therapeutic effect is unclear. Several anti-depressants and anti-psychotic drugs are α1-adrenoceptor antagonists contributing to side effects such as orthostatic hypotension. Adrenoceptors, α2 The three α2-adrenoceptor subtypes α2A, α2B and α2C are activated by (-)-adrenaline and with lower potency by (-)-noradrenaline. brimonidine and talipexole are agonists and rauwolscine and yohimbine antagonists selective for α2- relative to α1-adrenoceptors. [3H]rauwolscine, [3H]brimonidine and [3H]RX821002 are relatively selective radioligands. There are species variations in the pharmacology of the α2A-adrenoceptor. Multiple mutations of α2-adrenoceptors have been described, some associated with alterations in function. Presynaptic α2-adrenoceptors regulate many functions in the nervous system. The α2-adrenoceptor agonists clonidine, guanabenz and brimonidine affect central baroreflex control (hypotension and bradycardia), induce hypnotic effects and analgesia, and modulate seizure activity and platelet aggregation. clonidine is an anti-hypertensive (relatively little used) and counteracts opioid withdrawal. dexmedetomidine (also xylazine) is increasingly used as a sedative and analgesic in human [31] and veterinary medicine and has sympatholytic and anxiolytic properties. The α2-adrenoceptor antagonist mirtazapine is used as an anti-depressant. The α2B subtype appears to be involved in neurotransmission in the spinal cord and α2C in regulating catecholamine release from adrenal chromaffin cells. Although subtype-selective antagonists have been developed, none are used clinically and they remain experimental tools. Adrenoceptors, β The three β-adrenoceptor subtypes β1, β2 and β3 are activated by the endogenous agonists (-)-adrenaline and (-)-noradrenaline. Isoprenaline is selective for β-adrenoceptors relative to α1- and α2-adrenoceptors, while propranolol (pKi 8.2-9.2) and cyanopindolol (pKi 10.0-11.0) are relatively selective antagonists for β1- and β2- relative to β3-adrenoceptors. (-)-noradrenaline, xamoterol and (-)-Ro 363 show selectivity for β1- relative to β2-adrenoceptors. Pharmacological differences exist between human and mouse β3-adrenoceptors, and the 'rodent selective' agonists BRL 37344 and CL316243 have low efficacy at the human β3-adrenoceptor whereas CGP 12177 (low potency) and L 755507 activate human β3-adrenoceptors [88]. β3-Adrenoceptors are resistant to blockade by propranolol, but can be blocked by high concentrations of bupranolol. SR59230A has reasonably high affinity at β3-adrenoceptors, but does not discriminate between the three β- subtypes [320] whereas L-748337 is more selective. [125I]-cyanopindolol, [125I]-hydroxy benzylpindolol and [3H]-alprenolol are high affinity radioligands that label β1- and β2- adrenoceptors and β3-adrenoceptors can be labelled with higher concentrations (nM) of [125I]-cyanopindolol together with β1- and β2-adrenoceptor antagonists. Fluorescent ligands such as BODIPY-TMR-CGP12177 can be used to track β-adrenoceptors at the cellular level [8]. Somewhat selective β1-adrenoceptor agonists (denopamine, dobutamine) are used short term to treat cardiogenic shock but, chronically, reduce survival. β1-Adrenoceptor-preferring antagonists are used to treat cardiac arrhythmias (atenolol, bisoprolol, esmolol) and cardiac failure (metoprolol, nebivolol) but also in combination with other treatments to treat hypertension (atenolol, betaxolol, bisoprolol, metoprolol and nebivolol) [507]. Cardiac failure is also treated with carvedilol that blocks β1- and β2-adrenoceptors, as well as α1-adrenoceptors. Short (salbutamol, terbutaline) and long (formoterol, salmeterol) acting β2-adrenoceptor-selective agonists are powerful bronchodilators used to treat respiratory disorders. Many first generation β-adrenoceptor antagonists (propranolol) block both β1- and β2-adrenoceptors and there are no β2-adrenoceptor-selective antagonists used therapeutically. The β3-adrenoceptor agonist mirabegron is used to control overactive bladder syndrome. There is evidence to suggest that β-adrenoceptor antagonists can reduce metastasis in certain types of cancer [189].


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251775
Author(s):  
Maddalena Alessandra Wu ◽  
Emanuele Catena ◽  
Antonio Castelli ◽  
Roberto Rech ◽  
Beatrice Borghi ◽  
...  

Objective The term Idiopathic Systemic Capillary Leak Syndrome (ISCLS) refers to an uncommon condition of severe distributive shock, resulting from an abrupt shift of fluids and proteins from the intravascular to the interstitial compartment. We hypothesise that the autonomic nervous system (ANS) fails in regulating the response to hypovolemia in acute ISCLS and that ANS variables characterise the progression to the recovery. Design Prospective cohort study of patients admitted to ICU for severe ISCLS flares. Setting Single, referral center in Italy for ISCLS. Patients Analysis of cardiovascular signals recorded during seven severe ISCLS attacks and one prodromal period in five patients. Interventions ANS was studied non-invasively by means of heart rate variability (HRV) and blood pressure variability analysis, as an estimation of vagal and sympathetic modulation directed to the heart and vessels. Heart rate and systolic arterial pressure (SAP) variability were also used to assess baroreflex sensitivity. ANS variables were measured during the subsequent phases which characterise ISCLS flares, namely the acute phase, the post-acute phase, and the recovery phase. Measurements and main results HRV was severely depressed during the acute phase accounting for the loss of ANS modulation during massive capillary extravasation. This phase was characterised by shock and impaired baroreflex control, which allowed SAP to oscillate driven by respiratory activity. Impending shock and transition from shock to a post-acute phase were marked by change of baroreflex spectral variables. The baroreflex control was fully restored during recovery. Conclusions ANS modulation and baroreflex control are severely impaired during the acute haemodynamic instability which characterises ISCLS crises and their progressive restoration may be a clue of improvement. ANS indices during ISCLS flares might serve as useful biomarkers, able to timely announce the transition from one phase to the subsequent one, thus helping to adapt therapy accordingly.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Tyler Vermeulen ◽  
Stephen Klassen ◽  
Steven De Abreu ◽  
Danielle Greaves ◽  
Philippe Arbeille ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Andrew D'Souza ◽  
Stephen Klassen ◽  
Mark Badrov ◽  
Sophie Lalande ◽  
J. Shoemaker

2021 ◽  
Vol 10 (6) ◽  
pp. 1317
Author(s):  
Charles Verney ◽  
David Legouis ◽  
Guillaume Voiriot ◽  
Muriel Fartoukh ◽  
Vincent Labbé

Angiotensin-converting enzyme 2 (ACE2) receptor of severe acute respiratory syndrome coronavirus 2 is involved in baroreflex control mechanisms. We hypothesize that severe coronavirus infectious disease 2019 (COVID-19) patients may show an alteration in baroreflex-mediated heart rate changes in response to arterial hypotension. A pilot study was conducted to assess the response to hypotension in relation to continuous venovenous hemodiafiltration (CVVHDF) in critically ill patients with PCR-confirmed COVID-19 (from February to April 2020) and in critically ill non-COVID-19 patients with sepsis (from February 2018 to February 2020). The endpoint was a change in the heart rate in response to CVVHDF-induced hypotension. The association between COVID-19 status and heart rate change was estimated using linear regression. The study population included 6 COVID-19 patients (67% men; age 58 (53–64) years) and 12 critically ill non-COVID-19 patients (58% men; age 67 (51–71) years). Baseline characteristics, laboratory findings, hemodynamic parameters, and management before CVVHDF-induced hypotension were similar between the two groups, with the exception of a higher positive end-expiratory pressure and doses of propofol and midazolam administered in COVID-19 patients. Changes in the heart rate were significantly lower in COVID-19 patients as compared to critically ill non-COVID-19 patients (−7 (−9; −2) vs. 2 (2;5) bpm, p = 0.003), while the decrease in mean arterial blood pressure was similar between groups. The COVID-19 status was independently associated with a lower change in the heart rate (−11 (−20; −2) bpm; p = 0.03). Our findings suggest an inappropriate heart rate response to hypotension in severe COVID-19 patients compared to critically ill non-COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document