scholarly journals Exact Interior Reconstruction from Truncated Limited-Angle Projection Data

2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
Yangbo Ye ◽  
Hengyong Yu ◽  
Ge Wang

Using filtered backprojection (FBP) and an analytic continuation approach, we prove that exact interior reconstruction is possible and unique from truncated limited-angle projection data, if we assume a prior knowledge on a subregion or subvolume within an object to be reconstructed. Our results show that (i) the interior region-of-interest (ROI) problem and interior volume-of-interest (VOI) problem can be exactly reconstructed from a limited-angle scan of the ROI/VOI and a 180 degree PI-scan of the subregion or subvolume and (ii) the whole object function can be exactly reconstructed from nontruncated projections from a limited-angle scan. These results improve the classical theory of Hamaker et al. (1980).

2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Yangbo Ye ◽  
Hengyong Yu ◽  
Yuchuan Wei ◽  
Ge Wang

Exact image reconstruction from limited projection data has been a central topic in the computed tomography (CT) field. In this paper, we present a general region-of-interest/volume-of-interest (ROI/VOI) reconstruction approach using a truly truncated Hilbert transform on a line-segment inside a compactly supported object aided by partial knowledge on one or both neighboring intervals of that segment. Our approach and associated new data sufficient condition allows the most flexible ROI/VOI image reconstruction from the minimum account of data in both the fan-beam and cone-beam geometry. We also report primary numerical simulation results to demonstrate the correctness and merits of our finding. Our work has major theoretical potentials and innovative practical applications.


2018 ◽  
Vol 13 (4) ◽  
pp. 34
Author(s):  
T.A. Bubba ◽  
D. Labate ◽  
G. Zanghirati ◽  
S. Bonettini

Region of interest (ROI) tomography has gained increasing attention in recent years due to its potential to reducing radiation exposure and shortening the scanning time. However, tomographic reconstruction from ROI-focused illumination involves truncated projection data and typically results in higher numerical instability even when the reconstruction problem has unique solution. To address this problem, bothad hocanalytic formulas and iterative numerical schemes have been proposed in the literature. In this paper, we introduce a novel approach for ROI tomographic reconstruction, formulated as a convex optimization problem with a regularized term based on shearlets. Our numerical implementation consists of an iterative scheme based on the scaled gradient projection method and it is tested in the context of fan-beam CT. Our results show that our approach is essentially insensitive to the location of the ROI and remains very stable also when the ROI size is rather small.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Hendrik Joost Wisselink ◽  
Gert Jan Pelgrim ◽  
Mieneke Rook ◽  
Ivan Dudurych ◽  
Maarten van den Berge ◽  
...  

AbstractAssessment of image noise is a relevant issue in computed tomography (CT). Noise is routinely measured by the standard deviation of density values (Hounsfield units, HU) within a circular region of interest (ROI). We explored the effect of a spherical volume of interest (VOI) on noise measurements. Forty-nine chronic obstructive pulmonary disease patients underwent CT with clinical protocol (regular dose [RD], volumetric CT dose index [CTDIvol] 3.04 mGy, 64-slice unit), and ultra-low dose (ULD) protocol (median CTDIvol 0.38 mGy, dual-source unit). Noise was measured in 27 1-cm2 ROIs and 27 0.75-cm3 VOIs inside the trachea. Median true noise was 21 HU (range 17-29) for RD-CT and 33 HU (26-39) for ULD-CT. The VOI approach resulted in a lower mean distance between limits of agreement compared to ROI: 5.9 versus 10.0 HU for RD-CT (−40%); 4.7 versus 9.9 HU for ULD-CT (−53%). Mean systematic bias barely changed: −1.6 versus −0.9HU for RD-CT; 0.0 to 0.4HU for ULD-CT. The average measurement time was 6.8 s (ROI) versus 9.7 (VOI), independent of dose level. For chest CT, measuring noise with a VOI-based instead of a ROI-based approach reduces variability by 40-53%, without a relevant effect on systematic bias and measurement time.


2022 ◽  
pp. 1-13
Author(s):  
Lei Shi ◽  
Gangrong Qu ◽  
Yunsong Zhao

BACKGROUND: Ultra-limited-angle image reconstruction problem with a limited-angle scanning range less than or equal to π 2 is severely ill-posed. Due to the considerably large condition number of a linear system for image reconstruction, it is extremely challenging to generate a valid reconstructed image by traditional iterative reconstruction algorithms. OBJECTIVE: To develop and test a valid ultra-limited-angle CT image reconstruction algorithm. METHODS: We propose a new optimized reconstruction model and Reweighted Alternating Edge-preserving Diffusion and Smoothing algorithm in which a reweighted method of improving the condition number is incorporated into the idea of AEDS image reconstruction algorithm. The AEDS algorithm utilizes the property of image sparsity to improve partially the results. In experiments, the different algorithms (the Pre-Landweber, AEDS algorithms and our algorithm) are used to reconstruct the Shepp-Logan phantom from the simulated projection data with noises and the flat object with a large ratio between length and width from the real projection data. PSNR and SSIM are used as the quantitative indices to evaluate quality of reconstructed images. RESULTS: Experiment results showed that for simulated projection data, our algorithm improves PSNR and SSIM from 22.46db to 39.38db and from 0.71 to 0.96, respectively. For real projection data, our algorithm yields the highest PSNR and SSIM of 30.89db and 0.88, which obtains a valid reconstructed result. CONCLUSIONS: Our algorithm successfully combines the merits of several image processing and reconstruction algorithms. Thus, our new algorithm outperforms significantly other two algorithms and is valid for ultra-limited-angle CT image reconstruction.


2010 ◽  
Vol 44-47 ◽  
pp. 1612-1616
Author(s):  
Xiao Hui Huang ◽  
Guo Qun Zhao ◽  
Wen Guang Liu ◽  
Pei Lai Liu

The frameworks for finite element (FE) model of bone tissue available in pervious literatures, to some extent, are expert-oriented and give rise to a considerable deviation in geometric model and assignment of material property. The objective of this study is to develop a new framework to reconstruct accurate individual bone FE model based on CT images rapidly and conveniently. In image-processing, automatic segmentation of the region of interest (ROIs) improves the efficiency. The idea of enclosed volume of interest (VOI) overcomes the drawback of geometric ambiguity in Marching Cube (MC) method. Geometric model is easily obtained by a STL translator and smooth operator in home-made program. In the material property assignment, two templates for hexahedron and tetrahedron FE models, respectively, are put forth to smoothing an abrupt change of material property in the region from cortical to cancellous. K-mean algorithm is introduced to cluster material properties to improve partition performance. Finally, the new framework is demonstrated by the implementation of a femoral FE model.


2013 ◽  
Vol 834-836 ◽  
pp. 926-929
Author(s):  
Jing Sun ◽  
Fun Qun Shao

Electromagnetic tomography (EMT) is a recent imaging technique. Its purpose is to determine the distribution of electrical conductivity and magnetic permeability in a given region of interest. EMT is based on the principle of electromagnetic induction. This distribution is computed from the measurements of the induced voltages at several coils placed around the region which are produced by the application of different excitation patterns . Usually images are obtained through inversion of the projection data. The paper represents a fundamental investigation of the potential of using electromagnetic measurements for industrial tomography application. This paper concentrates on image reconstruction of either electrically conducting material or magnetically permeable materials. Finally a number of potential industrial applications for the EMT technique are discussed.


Sign in / Sign up

Export Citation Format

Share Document