scholarly journals Polarization Studies on Inhibitory Effect of Chromates and Dichromates on Corrosion of Tin Coated Steel in 0.5M Monochloroacetic Acid

2008 ◽  
Vol 5 (2) ◽  
pp. 302-308
Author(s):  
Sangita Sharma ◽  
Kinnari H. Parikh ◽  
Mahesh V. Kadia ◽  
Falguni D. Thakkar ◽  
Dhara D. Patel

Chromates and Dichromates have been tested for its inhibitory effects towards tin coated steel in 0.5M monochloroacetic acid. The corrosion behaviour of potassium chromate, sodium chromate, potassium dichromate, sodium dichromate and ammonium dichromate was studied by polarization curves, Tafel parameters like Tafel slopes, extrapolation of cathodic Tafel line and intersection of cathodic and anodic line at open circuit potential in presence of inhibitors have been tabulated along with other electrochemical parameters and corrosion current have been calculated from Tafel lines. The efficiencies are calculated and compared reasonably well with those obtained from loss in weight data. All the inhibitors induce a significant increase of potential positive and direction accounts for cathodic polarization. The Icorrhas also been calculated and that accounts well for cathodic reactions in presence of chromates and dichromates as inhibitors.

2021 ◽  
Vol 882 ◽  
pp. 96-103
Author(s):  
A.D. Vishwanatha ◽  
D.M. Shivanna ◽  
Bijayani Panda

In-situ AlxNiy reinforced aluminium matrix composites (AMCs) were produced by stir-casting route by adding 5, 10 and 15 weight percentage (wt.%) of Ni to AA6061 aluminum alloy. The density, porosity, microstructure, hardness and corrosion behaviour of the as-cast AMCs was studied and compared with that of the as-cast AA6061 alloy. The porosity in all the castings was found to be less than 0.1%. Further, the porosity was found to decrease with increase in Ni addition. Optical microscopy studies showed that in-situ formed AlxNiy was distributed along the dendritic arms. The distribution became non-homogeneous and coarse with increase in AlxNiy content. The coarse distribution of AlxNiy in the AA6061 matrix also resulted in the decrease in hardness of the composite, after an initial increase in hardness till 10 wt.% Ni addition. The open circuit potential (OCP) and corrosion potential (Ecorr) of the AMCs with 5, 10 and 15 wt. of % Ni addition was noble than that of the AA6061 alloy. This was understood to be due to the presence of AlxNiy intermetallic which is known to have a noble corrosion potential than the aluminium alloy. However, the corrosion current (icorr) increased while the polarization resistance (Rp) decreased with increase in Ni addition in the AMC. This indicates that the coarse non-homogeneous distribution of in-situ AlxNiy had a detrimental effect on the corrosion performance of the AMCs.


2000 ◽  
Vol 65 (1) ◽  
pp. 73-81
Author(s):  
P. Zivkovic ◽  
J. Pjescic ◽  
S. Mentus

The alloy composed of Al(95.53%), Zn(2.85%), Sn(0.515%), Ga(0.1%) and Sr(0.009%), with the weight percents in the parentheses, was prepared by melting, using Al(99.84%), a product of the Aluminium Plant-Podgorica, as the base material. The corrosion behaviour of this alloy was tested in relation to the behaviour of the base metals, by both open curcuit potential and polarization resistance methods, in aqueous solutions of both NaCl and Na2SO4, the concentration of which varied within the range 0.00051 - 0.51 mol dm -3. Over the whole salt concentration ranges, the corrosion parameters indicate that the corrosion rate of the alloy is significantly higher than the rate of the base material. For instance, for the concentration range 0.00051 - 0.51 mol dm -3 , the stationary open circuit potentials, related to SCE, in NaCl solutions were - 1.200 to - 1.460 V for the alloy and - 0.693 to - 0.920 V for Al, while in Na2SO4 solutions, the stationary open circuit potentials were - 1.190 to - 1.465V for the alloy and - 0.780 to - 0.860V for Al. At the same time, the corrosion current density in NaCl solutions varied within 11-89 mA cm -2 for the alloy and 0.35 - 0.80 for Al, while in Na2SO4 solutions it amounted to 5.7.52 mA cm -2 for the alloy and 0.28 - 0.88 mA cm -2 for Al.


Author(s):  
Vishnu R. ◽  
Jiten Das ◽  
S. B. Arya ◽  
Manish Roy

Recently, ZrN has been attracting interest for its excellent corrosion resistance, biocompatibility, high hardness, good lubricity and ductility. Although tribological study of ZrN coating has been carried out extensively, investigation related to corrosion of ZrN film is limited. In view of this and in view of possible applications of ZrN film in several engineering components, the present investigation has been undertaken to evaluate the corrosion response of ZrN film in seawater solution, Hank's solution, 0.5M H2SO4solution and 0.5M HCl solutions. Towards that purpose, potentiostatic, open circuit potential and potentiodynamic study of ZrN film deposited on plain carbon steel has been carried out in all these solutions. Results indicate that stable protective film is formed on the surface of ZrN coating in all these solution except 0.5M H2SO4 solution. The formation of protective film on ZrN coating is fastest in sea water solution and it is slowest in the Cl¯ ions containing media, 0.5 M HCl. The corrosion current is highest for 0.5M H2SO4 acid solution and least for Hank's solution.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Manuela Romas ◽  
Anna Munoz ◽  
Daniel Mareci ◽  
Carlos Vidal ◽  
Silvia Curteanu ◽  
...  

AbstractThe inhibitory activity of caffeine (1,3,7-trimethyl xanthine) on artificial saliva was studied on a CoCrMo alloy using different electrochemical methods: open circuit potential (OCP), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The results show that caffeine produces an inhibitory effect on the anodic currents due to its adsorption on the surface of the alloy. Temperature is another parameter with an influence on corrosion processes, so thermodynamic data were obtained from Arrhenius plots and Langmuir adsorption isotherms. The protective action of caffeine is enhanced at high temperatures at OCP, while for potentiodynamic experiments high temperatures block the inhibitory activity of caffeine and the corrosion rate increases. The process may also be studied by a simulation, determining the functional dependence between OCP, corrosion current density (i corr), corrosion potential (E corr), breakdown potential (E bd) and temperature and amount of caffeine in artificial saliva, for Heraenium® CE. The neural network-based methodology applied in this work provides accurate results, thus proving to be an efficient modelling technique.


2019 ◽  
Vol 84 (5) ◽  
pp. 503-516 ◽  
Author(s):  
Jelena Scepanovic ◽  
Vanja Asanovic ◽  
Dragan Radonjic ◽  
Darko Vuksanovic ◽  
Safija Herenda ◽  
...  

The paper describes the mechanical properties and the corrosion behaviour of three Al?Si alloys in 0.5 M NaCl solution. The alloys have exhibited similar values of hardness, but the highest tensile strength and the lowest elongation have shown the specimens of alloy with 11.38 % of silicon. Higher content of both copper and magnesium has contributed to better tensile strength and lower elongation of as-cast hypoeutectic alloys. The harmful effects of iron on mechanical properties of all alloys have been reduced to some extent by nickel and cobalt addition. The differences in the values of the open circuit potential of the examined alloys were insignificant. The thickness of the protective oxide layer has increased over time, and the layer has become very compact. Slight differences in the values of the corrosion potential of the alloys were determined, whereas the lowest value of the corrosion current was indicated for the hypereutectic alloy. The presence of intermetallic phases in the alloys has shown that the oxide film was not consistent. The severe pits have not been found at the surface of the corroded samples. Based on the obtained results, the examined alloys may be used for the manufacturing of the internal combustion engine parts.


2011 ◽  
Vol 194-196 ◽  
pp. 411-415 ◽  
Author(s):  
Guo Xing Chen ◽  
Yan Gao ◽  
Shu Hui Wu ◽  
Jin Li Hu

In this essay, the effects of grain refinement on corrosion behavior and hardness of equal-channel-angular-pressed (ECAPed) AISI 304 austenitic SS were studied. Finer grains with average size of 5μm in the specimen were obtained after four ECAPed passes compared with as-received one with grain size in range of 55μm Strain-induced grain refinement process can increase grain boundary and dislocation. Thus, the corrosion resistance of ECAPed AISI 304 austenitic SS would be improved.The refined microstructure achieves more positive open circuit potential (OCP) and lower corrosion current density in polarization corrosion tests.Through this process, austenitic stainless steel with better performance in corrosion resistance can be gained.


2020 ◽  
Vol 993 ◽  
pp. 1086-1094
Author(s):  
Yue Hou ◽  
Hai Yan Chen ◽  
Li Fan ◽  
Yu Rong Xu ◽  
Qian Cheng ◽  
...  

Two kinds of Co-based coatings were obtained through the laser cladding (LC) and plasma transfer arc (PTA) process. The phase composition and microstructure of the coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the different Co-based alloy coatings in 3.5wt% NaCl solution were compared by means of open-circuit potential (OCP), polarization curve and electrochemical impedance spectroscopy (EIS). XRD and SEM measurements demonstrated that the microstructures of the two different Co-based coatings were composed of primary solid solution γ-Co and eutectic structure Cr23C6, whereas, fish-bone typed (CoCrW)6C was also detected in the coating produced by PTA. The polarization curves and EIS results showed that in 3.5wt% NaCl solution, the passivation zones of the two coatings occurred obviously, the self-corrosion potential of the two coatings shifted to the right, and the self-corrosion current density was much smaller than that of the substrate. In addition, the Co-based coating made by LC showed lower corrosion current density and larger diameter of a capacitive arc than that of Co-based coating produced by PTA, indicating the LC coating had the best corrosion resistance in the three samples.


Author(s):  
J. Alias

Much research on magnesium (Mg) emphasises creating good corrosion resistance of magnesium, due to its high reactivity in most environments. In this study, powder metallurgy (PM) technique is used to produce Mg samples with a variation of aluminium (Al) composition. The effect of aluminium composition on the microstructure development, including the phase analysis was characterised by optical microscope (OM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). The mechanical property of Mg sample was performed through Vickers microhardness. The results showed that the addition of aluminium in the synthesised Mg sample formed distribution of Al-rich phases of Mg17Al12, with 50 wt.% of aluminium content in the Mg sample exhibited larger fraction and distribution of Al-rich phases as compared to the 20 wt.% and 10 wt.% of aluminium content. The microhardness values were also increased at 20 wt.% and 50 wt.% of aluminium content, comparable to the standard microhardness value of the annealed Mg. A similar trend in corrosion resistance of the Mg immersed in 3.5 wt.% NaCl solution was observed. The corrosion behaviour was evaluated based on potentiodynamic polarisation behaviour. The corrosion current density, icorr, is observed to decrease with the increase of Al composition in the Mg sample, corresponding to the increase in corrosion resistance due to the formation of aluminium oxide layer on the Al-rich surface that acted as the corrosion barrier. Overall, the inclusion of aluminium in this study demonstrates the promising development of high corrosion resistant Mg alloys.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Dana H. Abdeen ◽  
Muataz A. Atieh ◽  
Belabbes Merzougui

The inhibition behavior of carbon nanotubes (CNTs) and Gum Arabic (GA) on the corrosion of 316L stainless steel in CNTs–water nanofluid under the effect of different temperatures was investigated by electrochemical methods and surface analysis techniques. Thereby, 316L stainless steel samples were exposed to CNTs–water nanofluid under temperatures of 22, 40, 60 and 80 °C. Two concentrations of the CNTs (0.1 and 1.0 wt.% CNTs) were homogenously dispersed in deionized water using the surfactant GA and tested using three corrosion tests conducted in series: open circuit test, polarization resistance test, and potentiodynamic scans. These tests were also conducted on the same steel but in solutions of GA-deionized water only. Tests revealed that corrosion increases with temperature and concentration of the CNTs–water nanofluids, having the highest corrosion rate of 32.66 milli-mpy (milli-mil per year) for the 1.0 wt.% CNT nanofluid at 80 °C. In addition, SEM observations showed pits formation around areas of accumulated CNTs that added extra roughness to the steel sample. The activation energy analysis and optical surface observations have revealed that CNTs can desorb at higher temperatures, which makes the surface more vulnerable to corrosion attack.


Sign in / Sign up

Export Citation Format

Share Document