Analysis of a Coaxial Waveguide with Finite-Length Impedance Loadings in the Inner and Outer Conductors
A rigorous Wiener-Hopf approach is used to investigate the band stop filter characteristics of a coaxial waveguide with finite-length impedance loading. The representation of the solution to the boundary-value problem in terms of Fourier integrals leads to two simultaneous modified Wiener-Hopf equations whose formal solution is obtained by using the factorization and decomposition procedures. The solution involves 16 infinite sets of unknown coefficients satisfying 16 infinite systems of linear algebraic equations. These systems are solved numerically and some graphical results showing the influence of the spacing between the coaxial cylinders, the surface impedances, and the length of the impedance loadings on the reflection coefficient are presented.