scholarly journals The Effects of Coupling Agents on the Properties of Polyimide/Nano-Al2O3Three-Layer Hybrid Films

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Lizhu Liu ◽  
Ling Weng ◽  
Yuxia Song ◽  
Lin Gao ◽  
Qingquan Lei

PI/nano-Al2O3hybrid films were prepared by ultrasonic-mechanical method. Before addition, nano-Al2O3particles were firstly modified with different coupling agents. The micromorphology, thermal stability, mechanical properties, and electric breakdown strength of hybrid films were characterized and investigated. Results indicated that nano-Al2O3particles were homogeneously dispersed in the PI matrix by the addition of coupling agents. The thermal stability and mechanical properties of PI/nano-Al2O3composite films with KH550 were the best. The tensile strength and elongation at break of PI composite film were 119.1 MPa and 19.1%, which were 14.2% and 78.5% higher than unmodified PI composite film, respectively.

2014 ◽  
Vol 556-562 ◽  
pp. 371-374
Author(s):  
Kai Yan ◽  
Xiao Xu Liu

Polyamides (PI)-matrix composite films with inorganic nanoTiO2 have been fabricated by employing in situ polymerization. Before addition, TiO2 particles were firstly modified with coupling agents (KH550). The electric breakdown strength and micromorphology of hybrid films were characterized and investigated. Results indicated that nanoTiO2 particles were homogeneously dispersed in the PI matrix for the addition of coupling agents and the electric breakdown strength of PI/TiO2 composite films with KH550 were better than unmodified PI composite film. The breakdown field strength and tensile modulus of PI composite film with the inorganic content of 5 wt% were 200.1 (KV/mm). So the using coupling agent can effectively improve the compatibility and the homogenous dispersion of nanoTiO2 particles in PI matrix. Meanwhile, the procedure described here offers an effective and simple method to produce PI/TiO2 with excellent electrical needed for future application in electrical engineering field.


2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


Author(s):  
Jie Liu ◽  
Yanchun Liu ◽  
Eleanor M. Brown ◽  
Zhengxin Ma ◽  
Cheng-Kung Liu

The leather industry generates considerable amounts of solid waste and raises many environmental concerns during its disposal. The presence of collagen in these wastes provides a potential protein source for the fabrication of bio-based value-added products. Herein, a novel composite film was fabricated by incorporating vegetable-tanned collagen fiber (VCF), a mechanically ground powder-like leather waste, into a chitosan matrix and crosslinked with genipin. The obtained composite film showed a compact structure and the hydrogen bonding interactions were confirmed by FTIR analysis, indicating a good compatibility between chitosan and VCF. The optical properties, water absorption capacity, thermal stability, water vapor permeability and mechanical properties of the composite films were characterized. The incorporation of VCF into chitosan led to significant decreases in opacity and solubility of the films. At the same time, the mechanical properties, water vapor permeability and thermal stability of the films were improved. The composite film exhibited antibacterial activity against food-borne pathogens. Results from this research indicated the potential of the genipin-crosslinked chitosan/VCF composites for applications in antimicrobial packaging. 


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3236
Author(s):  
Peng Yin ◽  
Wen Zhou ◽  
Xin Zhang ◽  
Bin Guo ◽  
Panxin Li

In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), a novel reinforcement of dialdehyde lignocellulose (DLC) was prepared via the oxidation of lignocellulose (LC) using sodium periodate. Then, the DLC-reinforced TPS composites were prepared by an extrusion and injection process using glycerol as a plasticizer. The DLC and LC were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the effects of DLC content on the properties of the DLC/TPS composites were investigated via the evaluation of SEM images, mechanical properties, thermal stability, and contact angles. XRD showed that the crystallinity of the DLC decreased due to oxidation damage to the LC. SEM showed good dispersion of the DLC in the continuous TPS phase at low amounts of DLC, which related to good mechanical properties. The tensile strength of the DLC/TPS composite reached a maximum at a DLC content of 3 wt.%, while the elongation at break of the DLC/TPS composites increased with increasing DLC content. The DLC/TPS composites had better thermal stability than the neat TPS. As the DLC content increased, the water resistance first increased, then decreased. The highest tensile strength and elongation at break reached 5.26 MPa and 111.25%, respectively, and the highest contact angle was about 90.7°.


2020 ◽  
Vol 8 (22) ◽  
pp. 7476-7484 ◽  
Author(s):  
Xudong Zhou ◽  
Xiaoyun Liu ◽  
Zhongkai Cui ◽  
Jinlou Gu ◽  
Shaoliang Lin ◽  
...  

A new-type of hollow silica@ZIF-8 (HMS@ZIF-8) particle was successfully designed, fabricated and introduced into the fluorinated polybenzoxazole (6FPBO) matrix to prepare the HMS@ZIF-8/6FPBO composite film.


2011 ◽  
Vol 287-290 ◽  
pp. 302-305
Author(s):  
Xi Ping Gao ◽  
Ke Yong Tang ◽  
Yu Qing Zhang

The mechanical properties, swelling, solubility, and optical properties of composite films with poly(vinyl alcohol) (PVA) and gelatin were studied. With increasing the PVA content in the composite films, the tensile strength (TS) and elongation at break (EB) of the films increase. The swelling and solubility are different with different gelatin/PVA ratios, with the lowest at 1:5.


2012 ◽  
Vol 602-604 ◽  
pp. 690-695
Author(s):  
Hua Dong Wang ◽  
Rui Wang ◽  
Mao Fang Huang ◽  
Qi Yang

Thermoplastic vulcanizates (TPVs) based on epoxidized natural rubber (ENR) and polypropylene (PP) were prepared in an internal mixer at 180°C. The effects of curing systems (i.e., sulfur and peroxide) on morphological, rheological, thermal and mechanical properties were studied. It is found that the sulfur cured TPVs show higher tensile strength, tear strength and elongation at break than those cured with the DCP systems. The rheological analysis indicates that TPVs cured with DCP system show lower apparent shear viscosity than those with sulfur system. SEM studies show that TPVs vulcanized with DCP system exhibit smaller and finely dispersed rubber domains, which provides it higher thermal stability than sulfur cured TPVs.


2011 ◽  
Vol 332-334 ◽  
pp. 1739-1742 ◽  
Author(s):  
Ling Li ◽  
Zheng Wei Jin ◽  
Jian Qing Wang

A novel chitosan/poly(vinyl alcohol) composite packaging films were prepared by the casting method, and the effects of chitosan concentration on the structures, mechanical properties, permeability for oxygen and water vapor were discussed in this study. Mechanical properties of these films, which were evaluated by the tensile test and the barrier properties showed that the elongation at break (E) of the composite films decreased rapidly with the addition of chitosan, whereas, the tensile strength (TS) presented an almost opposite trend. Both the water vapour and oxygen transmission rate values were increased with the increasing amount of the chitosan in the composite films. Based on the obtained results, the better property of the composites films would be prepared chitosan/poly(vinyl alcohol) blends at a weight ratio of 3/5, and the tensile strength and elongation at break of the packaging films were 34.12 MPa, 40.24 % respectively. It was also observed that the water vapor permeability coefficient (Pv) and the oxygen permeability coefficient (P) of chitosan/poly(vinyl alcohol) composite packaging films prepared with weight ratio of 3/5 were 1.99×10-15 g•cm/cm2•s•Pa and 7.98×10-16 cm3•cm/cm2•s•Pa respectively. The composite films in this paper can be used in fresh-keeping or other fields as a kind of green packaging material.


Author(s):  
Sujan Kumar Das ◽  
Jahid M.M. Islam ◽  
Monirul Hasan ◽  
Humayun Kabir ◽  
Md Abdul Gafur ◽  
...  

Sodium alginate (TiO2) sand composites were prepared by solution casting. Purified sand was added in the composite films to increase electrical conductivity. Electrical properties such as conductivity, capacitance, dielectric constant, and loss tangent of the composites were investigated. The current voltage characteristics for all the composites showed ohmic behavior. All the electrical properties have been found to improve with the incorporation of sand (SiO2) but 6% sand containing composite exhibits the best electrical properties. The mechanical properties tensile strength (TS), elongation at break (Eb) and Young modulus for 6% sand containing composite film are found to be 4.445 MPa, 9.76%, and 72.8 MPa respectively. The experimental results reveal that the blended films exhibit higher stability and improved mechanical properties of both tensile strength and elongation at break in dry state. Water absorption properties of the composites are found to decrease with the increase of sand content. Lowest water uptake properties and highest stability were demonstrated by 6% sand containing sample. Electrically conductive composite films have useful applications for solar cells and optoelectronics. Thus, this study is very much expected to aid in the design and selection of proper composite for the potential application of solar cell and optoelectronics.


2013 ◽  
Vol 706-708 ◽  
pp. 340-343 ◽  
Author(s):  
Hong Li Li ◽  
Guo Xian Zhou ◽  
Yu Kai Shan ◽  
Ming Long Yuan

Abatract: The poly (L-lactide)/laponite composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The results show that when laponite content was lower than 0.2 %( mass w/w), laponite can be uniform dispersed in PLA and the composed material had good stability. Fourier transform infrared spectroscopy (FTIR) study demonstrates that PLA was successfully incorporated with laponite by Si-O bond. The mechanical measurement reveals that the tensile strength of PLA/laponite composite film has been increased with compared to pure PLA. The water contact angle (WCA) tests indicate that the hydrophobicity of the laponite modified PLA films can be improved. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and hydrophilicity of PLA.


Sign in / Sign up

Export Citation Format

Share Document