scholarly journals Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
H. A. Nefeslioglu ◽  
E. Sezer ◽  
C. Gokceoglu ◽  
A. S. Bozkir ◽  
T. Y. Duman

The main purpose of the present study is to investigate the possible application of decision tree in landslide susceptibility assessment. The study area having a surface area of 174.8  locates at the northern coast of the Sea of Marmara and western part of Istanbul metropolitan area. When applying data mining and extracting decision tree, geological formations, altitude, slope, plan curvature, profile curvature, heat load and stream power index parameters are taken into consideration as landslide conditioning factors. Using the predicted values, the landslide susceptibility map of the study area is produced. The AUC value of the produced landslide susceptibility map has been obtained as 89.6%. According to the results of the AUC evaluation, the produced map has exhibited a good enough performance.

2013 ◽  
Vol 15 ◽  
pp. 69-76 ◽  
Author(s):  
Chandra Prakash Poudyal

The decision tree is one of the new methods used for the determination of landslide susceptibility in the study area. The Phidim area is selected for the application of this method. The total surface area is 168.07 sq. km, and is located at the eastern part of Nepal. There are total of 10 different data bases used for this study which are; geological formation, elevation, slope, curvature, aspect, stream power index, topographic wetness index, distance from drainage, lineaments, and slope length, and are considered as landslide conditioning factors. Geographical information system (GIS) is used as basic tools and ARC/View is used for the processing data analysis and final map preparation. For the decision tree analysis the PASW 18 (statistical tool) is used to generate values of each factor. According to the results of decision tree, two geological formations; stream power index and slope are found as the most effective parameters on the landslide occurrence in the study area. Using the predicted values, the landslide susceptibility map of the study area is produced. To assess the performance of the produced susceptibility map, the area under curve (AUC) is drawn. The AUC value of the produced landslide susceptibility map has been obtained as 95.9%. According to the results of the AUC evaluation, the produced map has showed a good performance. As to wrap up, the produced map is able to be used for medium scaled and regional planning purposes. DOI: http://dx.doi.org/10.3126/bdg.v15i0.7419 Bulletin of the Department of Geology, Vol. 15, 2012, pp. 69-76


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3590 ◽  
Author(s):  
Bui ◽  
Moayedi ◽  
Kalantar ◽  
Osouli ◽  
Gör ◽  
...  

In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized with an artificial neural network (ANN) to optimize its performance. A spatial database comprising 208 historical landslides, as well as 14 landslide conditioning factors—elevation, slope aspect, plan curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall—is prepared to develop the ANN and HHO–ANN predictive tools. Mean square error and mean absolute error criteria are defined to measure the performance error of the models, and area under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the generated susceptibility maps. The findings showed that the HHO algorithm effectively improved the performance of ANN in both recognizing (AUROCANN = 0.731 and AUROCHHO–ANN = 0.777) and predicting (AUROCANN = 0.720 and AUROCHHO–ANN = 0.773) the landslide pattern.


Author(s):  
Desire Kubwimana ◽  
Lahsen Ait Brahim ◽  
Abdellah Abdelouafi

As in other hilly and mountainous regions of the world, the hillslopes of Bujumbura are prone to landslides. In this area, landslides impact human lives and infrastructures. Despite the high landslide-induced damages, slope instabilities are less investigated. The aim of this research is to assess the landslide susceptibility using a probabilistic/statistical data modeling approach for predicting the initiation of future landslides. A spatial landslide inventory with their physical characteristics through interpretation of high-resolution optic imageries/aerial photos and intensive fieldwork are carried out. Base on in-depth field knowledge and green literature, let’s select potential landslide conditioning factors. A landslide inventory map with 568 landslides is produced. Out of the total of 568 landslide sites, 50 % of the data taken before the 2000s is used for training and the remaining 50 % (post-2000 events) were used for validation purposes. A landslide susceptibility map with an efficiency of 76 % to predict future slope failures is generated. The main landslides controlling factors in ascendant order are the density of drainage networks, the land use/cover, the lithology, the fault density, the slope angle, the curvature, the elevation, and the slope aspect. The causes of landslides support former regional studies which state that in the region, landslides are related to the geology with the high rapid weathering process in tropical environments, topography, and geodynamics. The susceptibility map will be a powerful decision-making tool for drawing up appropriate development plans in the hillslopes of Bujumbura with high demographic exposure. Such an approach will make it possible to mitigate the socio-economic impacts due to these land instabilities


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Syamsul Bachri ◽  
Rajendra P. Shrestha ◽  
Fajar Yulianto ◽  
Sumarmi Sumarmi ◽  
Kresno Sastro Bangun Utomo ◽  
...  

There has been an increasing trend of land area being brought under human’s use over time. This situation has led the community to carry out land-use development activities in landslide hazard-prone areas. The use of land can have a positive impact by increasing economic conditions, but it can have negative impacts on the environment. Therefore, this study aimed to identify the landslide hazard, focusing on the development of a landform map to reduce the risk of landslide disaster in JLS, Malang Regency. The integration of remote sensing and geographic information systems, as well as field observation, were used to create a landform map and a landslide susceptibility map. Using the geomorphological approach as a basic concept in landform mapping, the morphology, morphogenesis, and morphoarrangement conditions were obtained from the remote sensing data, GIS, and field observation, while morphochronological information was obtained from a geological map. The landslide susceptibility map was prepared using 11 landslide conditioning factors by employing the index of entropy method. Thirty-nine landform units were successfully mapped into four landslide susceptibility classes. The results showed that the study area is dominated by a high level of landslide susceptibility with a majority of moderate to strongly eroded hill morphology. It also reaffirms that landform mapping is a reliable method by which to investigate landslide susceptibility in JLS, Malang Regency.


2021 ◽  
Vol 21 (3) ◽  
pp. 141-150
Author(s):  
Chang-Ho Song ◽  
Ji-Sung Lee ◽  
Yun-Tae Kim

Landslides in Korea are caused by various factors, such as topographic characteristics, geology, and climate change, and they cause significant damage to property and human life. It is necessary to analyze landslide susceptibility to identify the location of landslide occurrence precisely and respond to the risk of landslides. In this study, the probability of landslide occurrence was calculated through a landslide sensitivity analysis using a deep neural network based on eight conditioning factors and 26 landslide data. In addition, verification was performed using the ROC method. The landslide susceptibility obtained using a deep neural network showed a success rate of 70% and a prediction rate of 81.7%, indicating that the prediction rate was 11.7% higher than the success rate. In addition, a landslide susceptibility map for estimating the probability of landslide occurrence was plotted using the geometric spacing method. The chi-square test results indicated that the landslide susceptibility map obtained in this study was statistically significant. The location of landslides can be identified more accurately using the proposed method.


2021 ◽  
Vol 80 (13) ◽  
Author(s):  
Aglaia Matsakou ◽  
George Papathanassiou ◽  
Vassilis Marinos ◽  
Athanasios Ganas ◽  
Sotirios Valkaniotis

2021 ◽  
Vol 13 (11) ◽  
pp. 2166
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Mei Yang ◽  
Jingjue Chen ◽  
Tianqiang Liu ◽  
...  

This study proposed a new hybrid model based on the convolutional neural network (CNN) for making effective use of historical datasets and producing a reliable landslide susceptibility map. The proposed model consists of two parts; one is the extraction of landslide spatial information using two-dimensional CNN and pixel windows, and the other is to capture the correlated features among the conditioning factors using one-dimensional convolutional operations. To evaluate the validity of the proposed model, two pure CNN models and the previously used methods of random forest and a support vector machine were selected as the benchmark models. A total of 621 earthquake-triggered landslides in Ludian County, China and 14 conditioning factors derived from the topography, geological, hydrological, geophysical, land use and land cover data were used to generate a geospatial dataset. The conditioning factors were then selected and analyzed by a multicollinearity analysis and the frequency ratio method. Finally, the trained model calculated the landslide probability of each pixel in the study area and produced the resultant susceptibility map. The results indicated that the hybrid model benefitted from the features extraction capability of the CNN and achieved high-performance results in terms of the area under the receiver operating characteristic curve (AUC) and statistical indices. Moreover, the proposed model had 6.2% and 3.7% more improvement than the two pure CNN models in terms of the AUC, respectively. Therefore, the proposed model is capable of accurately mapping landslide susceptibility and providing a promising method for hazard mitigation and land use planning. Additionally, it is recommended to be applied to other areas of the world.


Sign in / Sign up

Export Citation Format

Share Document