scholarly journals Existence and Multiplicity of Periodic Solutions Generated by Impulses

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Liu Yang ◽  
Haibo Chen

We investigate the existence and multiplicity of periodic solutions for a class of second-order differential systems with impulses. By using variational methods and critical point theory, we obtain such a system possesses at least one nonzero, two nonzero, or infinitely many periodic solutions generated by impulses under different conditions, respectively. Recent results in the literature are generalized and significantly improved.

2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Jingli Xie ◽  
Zhiguo Luo ◽  
Yuhua Zeng

In this paper, we study a class of second-order neutral impulsive functional differential equations. Under certain conditions, we establish the existence of multiple periodic solutions by means of critical point theory and variational methods. We propose an example to illustrate the applicability of our result.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Wen-Zhen Gong ◽  
Qiongfen Zhang ◽  
X. H. Tang

By using minimax methods in critical point theory, a new existence theorem of infinitely many periodic solutions is obtained for a class of second-orderp-Laplacian systems with impulsive effects. Our result generalizes many known works in the literature.


2015 ◽  
Vol 4 (4) ◽  
pp. 251-261 ◽  
Author(s):  
Chun Li ◽  
Ravi P. Agarwal ◽  
Chun-Lei Tang

AbstractSome existence theorems are obtained for infinitely many periodic solutions of ordinary p-Laplacian systems by minimax methods in critical point theory.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xiaofang Meng ◽  
Yongkun Li

We are concerned with a class of singular Hamiltonian systems on time scales. Some results on the existence of periodic solutions are obtained for the system under consideration by means of the variational methods and the critical point theory.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Shugui Kang ◽  
Bao Shi

This paper deals with the second-order nonlinear systems of difference equations, we obtain the existence theorems of periodic solutions. The theorems are proved by using critical point theory.


2012 ◽  
Vol 2012 ◽  
pp. 1-24
Author(s):  
Liang Zhang ◽  
Peng Zhang

The existence of periodic solutions for nonautonomous second-order differential inclusion systems with -Laplacian is considered. We get some existence results of periodic solutions for system, a.e. , , by using nonsmooth critical point theory. Our results generalize and improve some theorems in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Xiaohong Hu ◽  
Dabin Wang ◽  
Changyou Wang

By using minimax methods in critical point theory, we obtain the existence of periodic solutions for second-order ordinary differential equations with linear nonlinearity.


2004 ◽  
Vol 134 (5) ◽  
pp. 1013-1022 ◽  
Author(s):  
Zhan Zhou ◽  
Jianshe Yu ◽  
Zhiming Guo

Consider the second-order discrete system where f ∈ C (R × Rm, Rm), f(t + M, Z) = f(t, Z) for any (t, Z) ∈ R × Rm and M is a positive integer. By making use of critical-point theory, the existence of M-periodic solutions of (*) is obtained.


2013 ◽  
Vol 63 (6) ◽  
Author(s):  
Liang Zhang ◽  
X. Tang

AbstractIn this paper, we deal with the existence and multiplicity of periodic solutions for the p(t)-Laplacian Hamiltonian system. Some new existence theorems are obtained by using the least action principle and minmax methods in critical point theory, and our results generalize and improve some existence theorems.


2011 ◽  
Vol 148-149 ◽  
pp. 1164-1169
Author(s):  
Wei Ming Tan ◽  
Fang Su

In this paper, by using critical point theory, a sufficient condition is obtained on the existence of periodic solutions for a class of nonlinear second-order difference systems.


Sign in / Sign up

Export Citation Format

Share Document