scholarly journals Enhanced Photoactivity of Fe + N Codoped Anatase-RutileTiO2Nanowire Film under Visible Light Irradiation

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Kewei Li ◽  
Haiying Wang ◽  
Chunxu Pan ◽  
Jianhong Wei ◽  
Rui Xiong ◽  
...  

Rutile-anatase phase mixedFe+Ncodoped TiO2nanowires were designed and prepared by a two-step anodic oxidation method. The results of X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy confirm that the preparedFe+Ncodoped TiO2nanowires exhibit intimately contacted anatase-rutile heterostructure with the rutile content of 21.89%. The X-ray photoelectron spectroscopy measurements show that nitrogen and iron atoms are incorporated into the titania oxide lattice, and the UV-visible absorption spectra show that the codoping of iron and nitrogen atoms could extend the absorption to visible light region. The photocatalytic activities of all the samples were evaluated by photocatalytic degradation of methylene blue under visible light irradiation. TheFe+Ncodoped sample achieves the best response to visible light and the highest photocatalytic activities. The enhancement of photocatalytic activity forFe+Ncodoped sample should be ascribed to the synergistic effects of codoped nitrogen and iron ions and the anatase-rutile heterostructure.

Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 105 ◽  
Author(s):  
Huiting Wang ◽  
Jin Mao ◽  
Zhaowei Zhang ◽  
Qi Zhang ◽  
Liangxiao Zhang ◽  
...  

Deoxynivalenol (DON) is a secondary metabolite produced by Fusarium, which is a trichothecene mycotoxin. As the main mycotoxin with high toxicity, wheat, barley, corn and their products are susceptible to contamination of DON. Due to the stability of this mycotoxin, traditional methods for DON reduction often require a strong oxidant, high temperature and high pressure with more energy consumption. Therefore, exploring green, efficient and environmentally friendly ways to degrade or reduce DON is a meaningful and challenging issue. Herein, a dendritic-like α-Fe2O3 was successfully prepared using a facile hydrothermal synthesis method at 160 °C, which was systematically characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). It was found that dendritic-like α-Fe2O3 showed superior activity for the photocatalytic degradation of DON in aqueous solution under visible light irradiation (λ > 420 nm) and 90.3% DON (initial concentration of 4.0 μg/mL) could be reduced in 2 h. Most of all, the main possible intermediate products were proposed through high performance liquid chromatography-mass spectrometry (HPLC-MS) after the photocatalytic treatment. This work not only provides a green and promising way to mitigate mycotoxin contamination but also may present useful information for future studies.


2021 ◽  
Author(s):  
N Sujatha ◽  
M Meenachi ◽  
S Mohammed Harshulkhanb ◽  
H.H Hegazy

Abstract In later years, numerous viable photocatalysts have been created in order to illuminate the issues of natural toxins. In this work, heterostructured photocatalysts Ag3VO4/g-C3N4 were prepared by effortless hydrothermal route in order to anchor Ag3VO4 on the surface of the g-C3N4 nanosheets. The prepared samples were fairly characterized using X-ray diffraction (XRD), Energy dispersive analysis of X-rays (EDAX), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-DRS), photoluminescence, and X-ray photoelectron spectroscopy (XPS) techniques. The photocatalytic activity of the samples was evaluated by degrading malachite green (MG) and 2,4 dimethyl phenol (DMP) in aqueous solution under visible light irradiation. Compared with Ag3VO4 and g-C3N4, the heterojuncted photocatalyst 50 wt% Ag3VO4/g-C3N4 exhibits the best activity such as high degradation efficiency (99%), high apparent constant (0.0923 min− 1) and long term stability towards DMP under visible light irradiation. The development of a phase scheme heterojunction between Ag3VO4 and g-C3N4 improved the photocatalytic efficiency of Ag3VO4/g-C3N4 composites. Furthermore, the porous structure of g-C3N4 and the effect of Ag surface plasmon resonance (SPR) speed up the isolation and transfer of electron-hole pairs, reducing the likelihood of recombination.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Thi To Nga Phan ◽  
Hong Lien Nguyen ◽  
Van Tuyen Le ◽  
Chi Nhan Phan ◽  
Thanh Huyen Pham

Mesoporous LaFeO3 as a visible light-driven photocatalyst was prepared by a nanocasting method using mesoporous silica (SBA-15) as a hard template. The as-prepared LaFeO3 photocatalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), and optical absorption spectra. The characterization studies and experimental results showed that LaFeO3 with porous structure caused by the removal of SBA-15 hard template could enhance the specific surface area of the resulting photocatalyst, which improves the phenol adsorption ability of the photocatalyst and in turn enhances its photo-Fenton catalytic activity. The photo-Fenton catalytic activity of the photocatalyst was investigated by photo-Fenton degradation of aqueous phenol under visible light irradiation. The effects of catalyst dosage, H2O2 concentration, and solution pH on the photo-Fenton catalytic degradation of phenol using mesoporous LaFeO3 were studied and optimized. Under the optimal conditions of 20 mg L−1 phenol, 1.0 g L−1 catalyst, and 10 mM H2O2 at pH = 5, the photo-Fenton degradation of phenol (93.47%) was achieved in 180 min under visible light irradiation. Furthermore, our results proved the stability and reusability of mesoporous LaFeO3 and revealed its catalytic mechanism for the photo-Fenton degradation of phenol.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 352 ◽  
Author(s):  
Benjawan Moongraksathum ◽  
Jun-Ya Shang ◽  
Yu-Wen Chen

Cu-doped titanium dioxide thin films (Cu/TiO2) were prepared on glass substrate via peroxo sol-gel method and dip-coating process with no subsequent calcination process for the degradation of organic dye and use as an antibacterial agent. The as-prepared materials were characterised using transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). For photocatalytic degradation of methylene blue in water, the samples were subjected to Ultraviolet C (UVC) and visible light irradiation. Degraded methylene blue concentration was measured using UV-Vis spectrophotometer. The antibacterial activities of the samples were tested against the gram-negative bacteria Escherichia coli (ATCC25922). Copper species were present in the form of CuO on the surface of modified TiO2 particles, which was confirmed using TEM and XPS. The optimal observed Cu/TiO2 weight ratio of 0.5 represents the highest photocatalytic activities under both UVC and visible light irradiation. Moreover, the same composition remarkably exhibited high antibacterial effectiveness against E. coli after illumination with ultraviolet A. The presence of CuO on TiO2 significantly enhanced photocatalytic activities. Therefore, active Cu-doped TiO2 can be used as a multipurpose coating material.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 266 ◽  
Author(s):  
Xiujuan Yu ◽  
Haiying Li ◽  
Xueli Hao ◽  
Zhiying Zhang ◽  
Yan Wang ◽  
...  

A series of Ag/Pd/m-BiVO4 (monoclinic) bimetallic photocatalytic materials with different loading amounts and different mass ratios of Ag and Pd were synthesized by a hydrothermal method and an NaBH4 reduction method. The Ag/Pd/m-BiVO4 photocatalyst with a total Ag and Pd loading of 2 wt% and an Ag-to-Pd mass ratio of 2:1 can selectively oxidize benzyl alcohol to benzaldehyde under visible light irradiation, the conversion rate was up to 89.9%, and the selectivity was greater than 99%. The conversion rate on Ag/Pd/m-BiVO4 was higher than those on Ag/m-BiVO4 and Pd/m-BiVO4. The photocatalysts were characterized by X-ray powder diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, N2 adsorption-desorption isothermal curves (BET) and other means. The effects of different light wavelengths and light intensities were compared. Then, the effects of different alcohol derivatives on the reactions were explored. The cycle experiments proved that the Ag/Pd/m-BiVO4 photocatalyst had good light stability and thermal stability. In addition, the capturing experiment of active species shows that the selective oxidation of benzyl alcohol is mainly accomplished through the synergistic action of h+, e−, •OH and •O2−.


Author(s):  
Uyi Sulaeman ◽  
Bin Liu ◽  
Shu Yin ◽  
Tsugio Sato

The highly active Ag3PO4 photocatalysts were successfully synthesized using the hydrophylic polymer of PVA (polyvinyl alcohol), PEG (polyethylene glycol) and PVP (polyvinyl pyrrolidone). The products were characterized using X-ray diffraction (XRD), Diffuse reflection spectroscopy (DRS), Field emission scanning electron microscope (FE-SEM), Brunauer–Emmett–Teller (BET) specific surface area, and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities were evaluated using decomposition of Rhodamine B (RhB) under visible light irradiation. The results showed that the PVA, PEG, and PVP increased the specific surface area and enhanced the photocatalytic activity of Ag3PO4. The highest photocatalytic activity could be observed in Ag3PO4 synthesized with PVA, mainly due to an increase in electron excitation induced by PVA chemically adsorbed on the surface. Copyright © 2017 BCREC Group. All rights reservedReceived: 13rd November 2016; Revised: 10th February 2017; Accepted: 10th February 2017How to Cite: Sulaeman, U., Liu, B., Yin, S., Sato, T. (2017). Synthesis of Ag3PO4 using Hydrophylic Polymer and Their Photocatalytic Activities under Visible Light Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 206-211 (doi:10.9767/bcrec.12.2.767.206-211)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.767.206-211 


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Gang-Juan Lee ◽  
Chi-Lun Hong ◽  
Valentina Batalova ◽  
Gennady Mokrousov ◽  
Jerry Wu

Nitrogen modified zinc sulfide photocatalysts were successfully prepared and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and surface area analysis. Thermal decomposition of the semisolid was carried out under nitrogen conditions at 500°C for 2 hours, and a series of nitrogen-doped ZnS photocatalysts were produced by controlling inflow flow rate of nitrogen at 15–140 mL/min. Optical characterizations of the synthesized N-doping ZnS substantially show the shifted photoabsorption properties from ultraviolet (UV) region to visible light. The band gaps of nitrogen-doped ZnS composite catalysts were calculated to be in the range of 2.58~2.74 eV from the absorptions edge position. The 15N/ZnS catalyst shows the highest photocatalytic activity, which results in 75.7% degradation of Orange II dye in 5 hrs by visible light irradiation, compared with pristine ZnS and higher percentage N-doping ZnS photocatalysts.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 942
Author(s):  
Zhiying Yan ◽  
Zijuan He ◽  
Mi Li ◽  
Lin Zhang ◽  
Yao Luo ◽  
...  

In order to further improve the photocatalytic performance of the SiO2/TiO2 composite under visible light irradiation, curcumin-doped SiO2/TiO2 nanocomposites were synthesized via directly incorporating it into the structure of SiO2/TiO2 during the synthesis using an inexpensive and readily available natural pigment (curcumin) as doping agent. The physicochemical properties of SiO2/TiO2 nanocomposites were characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform-infrared spectroscopy, N2 adsorption–desorption isotherms, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. The results indicate that all SiO2/TiO2 nanocomposites exhibited an anatase phase with a typical mesoporous structure. It was found that the dope of curcumin in the SiO2/TiO2 composite could decrease the crystal size, slightly improve the specific surface areas, significantly enhance the visible light absorption, and effectively narrow the band gap energy from 3.04 to 10(eV). Compared with bare SiO2/TiO2, the curcumin-doped SiO2/TiO2 resulted in enhanced photocatalytic reduction activity for Cr(VI) under visible light irradiation, and the CTS (12) sample with the appropriate content of curcumin of 12 wt % shows the photocatalytic yield reaching 100% within 2.5 hours, which is larger than CT (12) without silica. This could be attributed to the curcumin doping and the synergetic effects of SiO2 and TiO2 in SiO2/TiO2 nanocomposites.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xiaosong Zhou ◽  
Fei Yang ◽  
Bei Jin ◽  
Tang Xu ◽  
Yaqing Yang ◽  
...  

CdS with well-defined crystallinity is anchored on carbon nitride photoelectrodes by a successive chemical bath deposition. And the as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet-visible diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy techniques. The effect of the amount of CdS on the catalytic activity for the degradation of acid Orange II is investigated under visible light irradiation. Results show that the photoelectrodes composed of CdS/CN exhibit much higher catalytic activity than pure CN photoelectrodes. A possible photocatalytic mechanism of the CdS/CN electrodes is proposed under visible light irradiation.


Author(s):  
Snehamol Mathew ◽  
Priyanka Ganguly ◽  
Stephen Rhatigan ◽  
Vignesh Kumaravel ◽  
Ciara Byrne ◽  
...  

Indoor surface contamination by microbes is a major public health concern. A damp environment is one potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces using semiconductors like titania (TiO<sub>2</sub>) can effectively curb this growing threat.<b> </b>Metal-doped titania in anatase phase has been proved as a promising candidate for energy and environmental applications. In this present work, the antimicrobial efficacy of copper (Cu) doped TiO<sub>2 </sub>(Cu-TiO<sub>2</sub>) was evaluated against <i>Escherichia coli</i> (Gram-negative) and <i>Staphylococcus aureus</i> (Gram-positive) under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO<sub>2 </sub>was carried out <i>via</i> sol-gel technique. Cu-TiO<sub>2</sub> further calcined at various temperatures (in the range of 500 °C – 700 °C) to evaluate the thermal stability of TiO<sub>2</sub> anatase phase. The physico-chemical properties of the samples were characterised through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron spectroscopy (XPS) and UV-visible spectroscopy techniques. XRD results revealed that the anatase phase of TiO<sub>2</sub> was maintained well, up to 650 °C, by the Cu dopant. UV-DRS results suggested that the visible light absorption property of Cu-TiO<sub>2 </sub>was enhanced and the band gap is reduced to 2.8 eV. Density functional theory (DFT) studies emphasises the introduction of Cu<sup>+</sup> and Cu<sup>2+</sup> ions by replacing Ti<sup>4+</sup> ions in the TiO<sub>2</sub> lattice, creating oxygen vacancies. These further promoted the photocatalytic efficiency. A significantly high bacterial inactivation (99.9%) was attained in 30 mins of visible light irradiation by Cu-TiO<sub>2</sub>.


Sign in / Sign up

Export Citation Format

Share Document