scholarly journals Synthesis of Ag3PO4 using Hydrophylic Polymer and Their Photocatalytic Activities under Visible Light Irradiation

Author(s):  
Uyi Sulaeman ◽  
Bin Liu ◽  
Shu Yin ◽  
Tsugio Sato

The highly active Ag3PO4 photocatalysts were successfully synthesized using the hydrophylic polymer of PVA (polyvinyl alcohol), PEG (polyethylene glycol) and PVP (polyvinyl pyrrolidone). The products were characterized using X-ray diffraction (XRD), Diffuse reflection spectroscopy (DRS), Field emission scanning electron microscope (FE-SEM), Brunauer–Emmett–Teller (BET) specific surface area, and X-ray photoelectron spectroscopy (XPS). Photocatalytic activities were evaluated using decomposition of Rhodamine B (RhB) under visible light irradiation. The results showed that the PVA, PEG, and PVP increased the specific surface area and enhanced the photocatalytic activity of Ag3PO4. The highest photocatalytic activity could be observed in Ag3PO4 synthesized with PVA, mainly due to an increase in electron excitation induced by PVA chemically adsorbed on the surface. Copyright © 2017 BCREC Group. All rights reservedReceived: 13rd November 2016; Revised: 10th February 2017; Accepted: 10th February 2017How to Cite: Sulaeman, U., Liu, B., Yin, S., Sato, T. (2017). Synthesis of Ag3PO4 using Hydrophylic Polymer and Their Photocatalytic Activities under Visible Light Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2): 206-211 (doi:10.9767/bcrec.12.2.767.206-211)Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.767.206-211 

RSC Advances ◽  
2018 ◽  
Vol 8 (13) ◽  
pp. 6988-6995 ◽  
Author(s):  
B. Safizade ◽  
S. M. Masoudpanah ◽  
M. Hasheminiasari ◽  
A. Ghasemi

BiFeO3-25 wt% ZnFe2O4 exhibits a low specific surface area, high magnetization, and maximum photocatalytic efficiency of 97%.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1027 ◽  
Author(s):  
Tamer Khedr ◽  
Said El-Sheikh ◽  
Adel Ismail ◽  
Ewa Kowalska ◽  
Detlef Bahnemann

Microcystin-LR (MC-LR), a potent hepatotoxin produced by the cyanobacteria, is of increasing concern worldwide because of severe and persistent impacts on humans and animals by inhalation and consumption of contaminated waters and food. In this work, MC-LR was removed completely from aqueous solution using visible-light-active C/N-co-modified mesoporous anatase/brookite TiO2 photocatalyst. The co-modified TiO2 nanoparticles were synthesized by a one-pot hydrothermal process, and then calcined at different temperatures (300, 400, and 500 °C). All the obtained TiO2 powders were analyzed by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscope (TEM), specific surface area (SSA) measurements, ultraviolet-visible diffuse reflectance spectra (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and photoluminescence (PL) analysis. It was found that all samples contained mixed-phase TiO2 (anatase and brookite), and the content of brookite decreased with an increase in calcination temperature, as well as the specific surface area and the content of non-metal elements. The effects of initial pH value, the TiO2 content, and MC-LR concentration on the photocatalytic activity were also studied. It was found that the photocatalytic activity of the obtained TiO2 photocatalysts declined with increasing temperature. The complete degradation (100%) of MC-LR (10 mg L−1) was observed within 3 h, using as-synthesized co-modified TiO2 (0.4 g L−1) at pH 4 under visible light. Based on the obtained results, the mechanism of MC-LR degradation has been proposed.


2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Yaping Guo ◽  
Shaogui Yang ◽  
Xuefei Zhou ◽  
Chunmian Lin ◽  
Yajun Wang ◽  
...  

Silica-modified titania (SMT) powders with different atomic ratios of silica to titanium (Rx) were successfully synthesized by a simple ultrasonic irradiation technique. The prepared samples were characterized by X-ray diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible spectroscopy. The specific surface area was measured according to BET theory. Results indicate that the addition of silica to titania can suppress the crystalline size growth and the transformation of anatase phase to rutile phase of titania, enlarge specific surface area of the titania particles, and result in a blue shift of absorption edge compared to pure titania. The photocatalytic activity of the SMT samples was evaluated by decolorizing methyl orange aqueous solutions under UV-visible light irradiation. It was found in our study that this activity was affected by silica content, calcination temperature, H2SO4, and oxidants such as KIO4, (NH4)2S2O8and H2O2. The results reveal that the photocatalytic activity of 0.1-SMT catalyst is the best among all samples calcined at550°C for 1 h and it is 1.56 times higher than that of Degussa P-25 titania, which is a widely used commercial TiO2made by Germany Degussa company and has been most widely used in industry as photocatalyst, antiultraviolet product, and thermal stabilizer. The optimal calcination temperature for preparation was550°C. The photocatalytic activity of SMT samples is significantly enhanced by H2SO4solution treatment and oxidants.


2021 ◽  
Author(s):  
Mohsen Nasirian

Heterogeneous semiconductor photocatalysts have been shown to be efficient for the degradation of refractory organics into simple compounds. Among all photocatalysts, TiO2 is the most used one. Two issues that arise with the use of unmodified TiO2 as a photocatalyst are the unwanted fast recombination of electron/hole pairs and the lower effectiveness in the presence of visible light irradiation. Doping a transition metal or a non-metal into TiO2 and its combination with another photocatalyst have been used to enhance its photoactivity. This study is to develop a new photocatalyst by the combination of TiO2 with another semiconductor oxide (Fe2O3) and its doping with transition metal such as Ag. Combined photocatalysts of Fe2O3 /TiO2 (with different mass ratio of Fe:TiO2) is synthesized and then silver ion is doped to combine photocatalysts (with different mass ratio of Ag:TiO2) to produce a new composite photocatalyst of Ag/TiO2/Fe2O3. A new method of UV-assisted thermal synthesis is also employed to prepare the new composite photocatalyst. Methyl orange (MO) and Congo red (CR), as model pollutants, are used to test the developed photocatalyst. In addition, nitrogen-doped titanium dioxide photocatalyst (N-TiO2) with heterojunction structures is synthesized by three different approaches including new UV-assisted thermal synthesis, annealing, and microwave techniques. The novel UV-assisted thermal synthesis has produced encouraging results as a preparation method to prepare N-TiO2 at lower temperature and atmospheric pressure as well as a lower cost. Design of Experiment (DOE) along with response surface methodology (RSM) is used to optimize the photocatalytic activity of N-TiO2 as well as the affecting parameters (wavelength, light intensity, pH, and initial TOC) for decomposition of organics. The structure of all synthesized composite photocatalysts are investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) is employed to evaluate surface characteristics and elemental analysis of synthesized photocatalysts. Specific surface area of photocatalysts is measured based on Brunauer, Emmett and Teller (BET) technique. Results show that bare TiO2 has the lowest photocatalytic activity in degradation of organics. When silver is doped to TiO2, the degradation of MO is slightly enhanced at specific mass ratio. The presence of Fe2O3 in the new composite causes a red shift and enhances the potential to absorb higher range of visible light. Results from XRD confirmed that Fe3+ substitutes with Ti4+ in the crystal lattice of TiO2 and crystal defect occurs. The degradation of MO in presence of Ag/TiO2/Fe2O3 (Ag/TiO2=0.005 w:w and Fe:TiO2= 0.01 w:w) reached to 95.6% under sunlight in three hours with a red shift towards visible light. It is observed that there is an optimum specific surface area of photocatalysts by doping and combining photocatalysts.


2021 ◽  
Author(s):  
Sankara Rao Miditana ◽  
Siva Rao Tirukkovalluri ◽  
Imandi Manga Raju ◽  
Shaik Abdul Alim ◽  
Genji Jaishree ◽  
...  

Abstract The present work mainly aimed to synthesize different weight percentages (0.25-1.00 wt%) of Manganese (Mn2+) and Magnesium (Mg2+) bimetal ions doped TiO2 nanomaterial assisted with different weight percentages (5-15 wt%) of Gemini surfactant (GS) using sol-gel method. The bimetal doped and undoped TiO2 photocatalysts were characterized by X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy, Transmission Electron Microscopy, Brunauer-Emmett-Teller surface area analyzer, and Photoluminescence Spectroscopy. Characterization results revealed that mesoporous multi-particle anatase TiO2 nanoparticles with a narrowed band gap, small particle size, and high surface area were formed due to the combined effect of Mn2+/Mg2+ bimetal ions doping and effective encapsulation of GS over the initially formed TiO2 nanoparticles. The surface elemental composition of the 0.25 wt% Mn2+ and 1.00 wt% Mg2+ bimetal doped TiO2 in the presence of 10 wt% of GS (after calcination) revealed the presence of both the metal dopants Mn2+ and Mg2+ along with the Ti and O and their chemical interactions were further confirmed by FT-IR results. The photocatalytic activity of these catalysts was assessed by the degradation of Methyl Red using visible light irradiation. To understand the effect of different reaction parameters on the photocatalytic activity of the nanocatalysts such as the dopant concentration, surfactant concentration, catalyst dosage, solution pH, and initial dye concentrations were investigated and optimized to achieve the best performance. The photoluminescence results conclude that OH radicals are the crucial reactive species responsible for oxidative photocatalytic degradation of Methyl Red.


2020 ◽  
Author(s):  
Sankara Rao Miditana ◽  
Siva Rao Tirukkovalluri ◽  
Imandi Manga Raju ◽  
Shaik Abdul Alim ◽  
Genji Jaishree ◽  
...  

Abstract The present work mainly aimed to synthesize different weight percentages (0.25-1.00 wt%) of Manganese (Mn2+) and Magnesium (Mg2+) bimetal ions doped TiO2 nanomaterial assisted with different weight percentages (5-15 wt%) of Gemini Surfactant (GS) using sol-gel method. The bimetal doped and undoped TiO2 photocatalysts were characterized by X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Diffused Reflectance Spectroscopy, Transmission Electron Microscopy, Brunauer-Emmett-Teller surface area analyzer, and Photoluminescence Spectroscopy. Characterization results evinced that Mn2+/Mg2+ bimetal ions doping and encapsulation of GS on TiO2 nanoparticles promote the formation of mesoporous multi-particle anatase TiO2 nanocatalysts with a narrowed band gap, less particle size, and high surface area. The surface elemental composition of the 0.25 wt% Mn2+& 1.00 wt% Mg2+ bimetal doped TiO2 in presence of 10 wt% of Gemini surfactant (after calcination) revealed the presence of both the metal dopants Mn2+ and Mg2+ along with the Ti and O and their chemical interactions were further confirmed by FT-IR results. The photocatalytic activity of these catalysts was assessed by the degradation of Methyl Red (MR) using visible light irradiation. To understand the effect of different reaction parameters on the photocatalytic activity of the nanocatalysts such as the dopant concentration, GS concentration, catalyst dosage, solution pH, and initial dye concentrations were investigated and optimized to achieve the best performance. The photoluminescence results conclude that OH radicals are the crucial reactive species responsible for oxidative photocatalytic degradation of MR.


2020 ◽  
Vol 96 (3) ◽  
pp. 728-741
Author(s):  
Mahtab Gorgani ◽  
Behzad Koozegar Kaleji

Abstract In this study, several TiO2 mesoporous nanoparticles with different mol% of niobium and silver were synthesized using the sol–gel method. The crystalline phase, chemical state, photocatalytic and optical properties, specific surface area, and morphology of mesoporous nanoparticles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis reflective spectroscopy (UV–Vis), Brunauer–Emmett–Teller-specific surface area (BET) and field emission scanning electron microscopy (FESEM). With increasing calcination temperature, the photocatalytic activity of the samples gradually increased due to the improvement of crystallization of the anatase and rutile phases. Nb/Ag codoping sample calcined at 550 °C has reduced the band gap energy (3.17 eV to 3.06 eV) and improved the photocatalytic properties of samples under visible light (xenon lamp, 200 W for 1 h and 2 h). Doped TiO2 mesoporous nanoparticles were shown to have the highest photocatalytic activity as compared with the pure TiO2 nanoparticles. The best photocatalytic efficiency of codoped TiO2 mesoporous nanoparticles was observed for the TNA3 sample calcined under 550 °C, containing molar contents of Nb (0.5 mol%) and Ag (1 mol%) dopant ions with 95.60% efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Quan Gu ◽  
Huaqiang Zhuang ◽  
Jinlin Long ◽  
Xiaohan An ◽  
Huan Lin ◽  
...  

The C-doped CdO photocatalysts were simply prepared by high-temperature solid-state process. The as-prepared photocatalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the carbon was doped into CdO, resulting in the red-shift of the optical absorption of CdO. The photocatalytic behavior of CdO and C-doped CdO was evaluated under the visible light irradiation by using the photocatalytic hydrogen evolution as a model reaction. The C-doped CdO photocatalysts had higher photocatalytic activity over parent CdO under visible light irradiation. The results indicated that the H2production was due to the existence of CdS and the enhancement of visible light photocatalytic activity of H2production was originated from the doping of carbon into the CdO lattice. The probably reaction mechanism was also discussed and proposed.


2007 ◽  
Vol 72 (3) ◽  
pp. 379-391 ◽  
Author(s):  
Lin Zhou ◽  
Xin Tan ◽  
Lin Zhao ◽  
Ming Sun

In order to utilize visible light and enhance the catalytic efficiency in photocatalytic conversion of NOx, nitrogen and platinum atoms were doped in commercially available photocatalytic TiO2 powders by impregnating and photodeposition methods, respectively. X-ray diffraction (XRD) showed that the crystal structures of TiO2 were not changed after the doping process. Analysis by X-ray photoelectron spectroscopy (XPS) indicated that N atoms were incorporated in the bulk phase of TiO2 as N-Ti-O linkages and Pt atoms were at the surface. A significant shift of the absorption edge to lower energy and higher absorption in the visible light region were observed. This Pt,N-codoped TiO2 powder exhibited excellent photocatalytic activity and fairly stable chemical property for the degradation of NOx under visible light irradiation. The sample mixed with 20 wt.% ammonium carbonate and doped with 0.5 at.% platinum atoms showed the best photocatalytic activity and its activity can be restored by rinsing with water after long-term operation.


Sign in / Sign up

Export Citation Format

Share Document