scholarly journals CD4 T-Cell-Independent Antibody Response Reduces Enterovirus 71 Lethality in Mice by Decreasing Tissue Viral Loads

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Li-Chiu Wang ◽  
Chia-Min Kao ◽  
Pin Ling ◽  
Ih-Jen Su ◽  
Tung-Miao Chang ◽  
...  

Enterovirus 71 (EV71) has induced fatal encephalitis in hundreds of thousands of infants and young children in the Asia-Pacific region since the past decade. Lymphocyte and antibody responses have been suspected to aggravate EV71-induced neurological symptoms, so anti-inflammatory agents have been used to treat patients with neurological symptoms. In the present study, we found that mice deficient in CD4+T cells were resistant to EV71 infection as wild-type mice, whereas mice deficient in B cells were highly susceptible to viral infection. Compensation of CD4 T-cell function by other immune cells was not likely, because wild-type mice depleted of CD4+T cells were also resistant to viral infection. Infected CD4 T-cell-deficient mice produced virus-specific neutralizing antibodies, IgM and IgG. Moreover, adoptive transfer of the virus-specific antibody produced by infected CD4 T-cell-deficient mice protected B-cell-deficient mice from infection by reducing tissue viral loads. Collectively, our results show that the CD4 T-cell-independent antibody response promotes the survival of EV71-infected mice and suggest great potential for the use of vaccines and neutralizing antibodies to reduce fatal symptoms in patients.

1996 ◽  
Vol 184 (2) ◽  
pp. 753-758 ◽  
Author(s):  
X G Tai ◽  
Y Yashiro ◽  
R Abe ◽  
K Toyooka ◽  
C R Wood ◽  
...  

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28-independent costimulatory signal.


2007 ◽  
Vol 293 (3) ◽  
pp. F741-F747 ◽  
Author(s):  
Kathrin Hochegger ◽  
Tobias Schätz ◽  
Philipp Eller ◽  
Andrea Tagwerker ◽  
Dorothea Heininger ◽  
...  

T cells have been implicated in the pathogenesis of renal ischemia-reperfusion injury (IRI). To date existing data about the role of the T cell receptor (Tcr) are contradictory. We hypothesize that the Tcr plays a prominent role in the late phase of renal IRI. Therefore, renal IRI was induced in α/β, γ/δ T cell-deficient and wild-type mice by clamping renal pedicles for 30 min and reperfusing for 24, 48, 72, and 120 h. Serum creatinine increased equally in all three groups 24 h after ischemia but significantly improved in Tcr-deficient animals compared with wild-type controls after 72 h. A significant reduction in renal tubular injury and infiltration of CD4+ T-cells in both Tcr-deficient mice compared with wild-type controls was detected. Infiltration of α/β T cells into the kidney was reduced in γ/δ T cell-deficient mice until 72 h after ischemia. In contrast, γ/δ T cell infiltration was equal in wild-type and α/β T cell-deficient mice, suggesting an interaction between α/β and γ/δ T cells. Data from γ/δ T cell-deficient mice were confirmed by in vivo depletion of γ/δ T cells in C57BL/6 mice. Whereas α/β T cell-deficient mice were still protected after 120 h, γ/δ T cell-deficient mice showed a “delayed wild-type phenotype” with a dramatic increase in kidney-infiltrating α/β, Tcr-expressing CD4+ T-cells. This report provides further evidence that α/β T cells are major effector cells in renal IRI, whereas γ/δ T cells play a role as mediator cells in the first 72 h of renal IRI.


2020 ◽  
Vol 5 (51) ◽  
pp. eabb5590 ◽  
Author(s):  
Heather M. Ren ◽  
Elizabeth M. Kolawole ◽  
Mingqiang Ren ◽  
Ge Jin ◽  
Colleen S. Netherby-Winslow ◽  
...  

Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R−/−) fail to become bTRM. IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R−/− brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell–deficient and IL21R−/− brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell–depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.


2020 ◽  
Vol 4 (11) ◽  
pp. 701-712
Author(s):  
Nathália V. Batista ◽  
Yu-Han Chang ◽  
Kuan-Lun Chu ◽  
Kuan Chung Wang ◽  
Mélanie Girard ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Raquel Fernandez-Perez ◽  
Mercedes Lopez-Santalla ◽  
Rebeca Sánchez-Domínguez ◽  
Omaira Alberquilla ◽  
Irene Gutiérrez-Cañas ◽  
...  

Galectin-1 is a β-galactoside-binding lectin, ubiquitously expressed in stromal, epithelial, and different subsets of immune cells. Galectin-1 is the prototype member of the galectin family which shares specificity with β-galactoside containing proteins and lipids. Immunomodulatory functions have been ascribed to endogenous galectin-1 due to its induction of T cell apoptosis, inhibitory effects of neutrophils and T cell trafficking. Several studies have demonstrated that administration of recombinant galectin-1 suppressed experimental colitis by modulating adaptive immune responses altering the fate and phenotype of T cells. However, the role of endogenous galectin-1 in intestinal inflammation is poorly defined. In the present study, the well-characterized acute dextran sulfate sodium (DSS)-induced model of ulcerative colitis was used to study the function of endogenous galectin-1 during the development of intestinal inflammation. We found that galectin-1 deficient mice (Lgals1−/− mice) displayed a more severe intestinal inflammation, characterized by significantly elevated clinical scores, than their wild type counterparts. The mechanisms underlying the enhanced inflammatory response in colitic Lgals1−/− mice involved an altered Th17/Th1 profile of effector CD4+ T cells. Furthermore, increased frequencies of Foxp3+CD4+ regulatory T cells in colon lamina propria in Lgals1−/− mice were found. Strikingly, the exacerbated intestinal inflammatory response observed in Lgals1−/− mice was alleviated by adoptive transfer of wild type Foxp3+CD4+ regulatory T cells at induction of colitis. Altogether, these data highlight the importance of endogenous galectin-1 as a novel determinant in regulating T cell reactivity during the development of intestinal inflammation.


2020 ◽  
Author(s):  
Miguel A.B. Mercado ◽  
Wuying Du ◽  
Priyangi A. Malaviarachchi ◽  
Jessica I. Gann ◽  
Lin-Xi Li

AbstractProtective immunity to the obligate intracellular bacterium Chlamydia is thought to rely on CD4 T cell-dependent IFNγ production. Nevertheless, whether IFNγ is produced by other cellular source during Chlamydia infection and how CD4 T cell-dependent and -independent IFNγ contribute differently to host resistance has not been carefully evaluated. In this study, we dissect the requirements of IFNγ produced by innate immune cells and CD4 T cells for resolution of Chlamydia muridarum female reproductive tract (FRT) infection. After C. muridarum intravaginal inoculation, IFNγ-deficient and T cell-deficient mice exhibited opposite phenotypes for survival and bacterial shedding at the FRT mucosa, demonstrating the distinct requirements for IFNγ and CD4 T cells in host defense against Chlamydia. In Rag-deficient mice, IFNγ produced by innate lymphocytes (ILCs) accounted for early bacterial containment and prolonged survival in the absence of adaptive immunity. Although group I ILCs are potent IFNγ producers, we found that mature NK cells and ILC1 were not the sole source for innate IFNγ in response to Chlamydia. T cell adoptive transfer experiments revealed that WT and IFNγ-deficient CD4 T cells were equally capable of mediating effective bacterial killing in the FRT during the early stage of Chlamydia infection. Together, our results revealed that innate IFNγ is essential for preventing systemic Chlamydia dissemination, whereas IFNγ produced by CD4 T cells is largely dispensable at the FRT mucosa.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Abdalla Sheikh ◽  
Jennie Jackson ◽  
Hanjoo Brian Shim ◽  
Clement Yau ◽  
Jung Hee Seo ◽  
...  

AbstractInterleukin-7 (IL-7) is a cytokine known for its importance in T cell development and survival. How IL-7 shapes CD8 T cell responses during an acute viral infection is less understood. We had previously shown that IL-7 signaling deficient mice have reduced accumulation of influenza-specific CD8 T cells following influenza infection. We sought to determine whether IL-7 affects early CD8 T cell expansion in the mediastinal lymph node and effector function in the lungs. Using IL-7Rα signaling deficient mice, we show that IL-7 is required for a normal sized mediastinal lymph node and the early clonal expansion of influenza-specific CD8 T cells therein. We show that IL-7 plays a cell-intrinsic role in the accumulation of NP366–374 and PA224–233-specific CD8 T cells in the lymph node. We also found that IL-7 shapes terminal differentiation, degranulation and cytokine production to a greater extent in PA224–233-specific than NP366–374-specific CD8 T cells. We further demonstrate that IL-7 is induced in the lung tissue by viral infection and we characterize multiple cellular sources that contribute to IL-7 production. Our findings on IL-7 and its effects on lower respiratory diseases will be important for expanding the utility of therapeutics that are currently available.


1998 ◽  
Vol 72 (7) ◽  
pp. 6138-6145 ◽  
Author(s):  
Narendra Chirmule ◽  
Joseph V. Hughes ◽  
Guang-Ping Gao ◽  
Steven E. Raper ◽  
James M. Wilson

ABSTRACT Adenovirus vectors delivered to lung are being considered in the treatment of cystic fibrosis (CF). Vectors from which E1 has been deleted elicit T- and B-cell responses which confound their use in the treatment of chronic diseases such as CF. In this study, we directly compare the biology of an adenovirus vector from which E1 has been deleted to that of one from which E1 and E4 have been deleted, following intratracheal instillation into mouse and nonhuman primate lung. Evaluation of the E1 deletion vector in C57BL/6 mice demonstrated dose-dependent activation of both CD4 T cells (i.e., TH1 and TH2 subsets) and neutralizing antibodies to viral capsid proteins. Deletion of E4 and E1 had little impact on the CD4 T-cell proliferative response and cytolytic activity of CD8 T cells against target cells expressing viral antigens. Analysis of T-cell subsets from mice exposed to the vector from which E1 and E4 had been deleted demonstrated preservation of TH1 responses with markedly diminished TH2 responses compared to the vector with the deletion of E1. This effect was associated with reduced TH2-dependent immunoglobulin isotypes and markedly diminished neutralizing antibodies. Similar results were obtained in nonhuman primates. These studies indicate that the vector genotype can modify B-cell responses by differential activation of TH1 subsets. Diminished humoral immunity, as was observed with the E1 and E4 deletion vectors in lung, is indeed desired in applications of gene therapy where readministration of the vector is necessary.


2017 ◽  
Vol 85 (10) ◽  
Author(s):  
Nicole V. Acuff ◽  
Xin Li ◽  
Krishna Latha ◽  
Tamas Nagy ◽  
Wendy T. Watford

ABSTRACT Tumor progression locus 2 (Tpl2) is a serine-threonine kinase that regulates Th1 differentiation, secretion of the inflammatory cytokine gamma interferon (IFN-γ), and host defense against the intracellular pathogens Toxoplasma gondii, Listeria monocytogenes, and Mycobacterium tuberculosis. However, relatively little is known about the contribution of Tpl2 to Th17 differentiation and immune cell function during infection with an extracellular pathogen. The goal of this study was to determine whether Tpl2 influences the immune response generated to the extracellular bacterium Citrobacter rodentium, which induces a mixed Th1 and Th17 response. During peak infection with C. rodentium, Tpl2 −/− mice experienced greater bacterial burdens with evidence of dissemination to the liver and spleen but ultimately cleared the bacteria within 3 weeks postinfection, similar to the findings for wild-type mice. Tpl2 −/− mice also recruited fewer neutrophils and monocytes to the colon during peak infection, which correlated with increased bacterial burdens. In mixed bone marrow chimeras, Tpl2 was shown to play a T cell-intrinsic role in promoting both IFN-γ and interleukin-17A production during infection with C. rodentium. However, upon CD4 T cell transfer into Rag −/− mice, Tpl2 −/− CD4 T cells were as protective as wild-type CD4 T cells against the dissemination of bacteria and mortality. These data indicate that the enhanced bacterial burdens in Tpl2 −/− mice are not caused primarily by impairments in CD4 T cell function but result from defects in innate immune cell recruitment and function.


Sign in / Sign up

Export Citation Format

Share Document