scholarly journals A Rectangular Ring, Open-Ended Monopole Antenna with Two Symmetric Strips for WLAN and WiMAX Applications

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Joong-Han Yoon ◽  
Young-Chul Rhee ◽  
Woo-Su Kim

A triple-band rectangular ring, open-ended monopole antenna with symmetricLstrips for wireless local area network (WLAN)/Worldwide Interoperability of Microwave Access (WiMAX) applications is proposed. The proposed antenna consists of two symmetric folded arms andLstrips. Based on the concept, a prototype of the proposed triple antenna has been designed, fabricated, and tested. The numerical and experimental results demonstrated that the proposed antenna satisfied the −10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. Furthermore, this paper presented and discussed the 2D radiation patterns and 3D gains according to the results of the experiment. The proposed antenna’s peak gain varied between 2.17 and 4.93 dBi, and its average gain varied between −2.97 and −0.53 dBi.

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yingsong Li ◽  
Wenhua Yu

A miniaturized triple band monopole antenna with a small size is proposed and its performance is investigated both numerically and experimentally for worldwide interoperability for microwave access (WiMAX) and wireless local area network (WLAN) applications. The three resonance frequencies are realized by using a toothbrush-shaped patch (TSP), a meander line (ML), and an inverted U-shaped patch (IUSP). The center frequencies of the triple bands can be controlled by adjusting the dimensions of the TSP, ML, and IUSP. Simulated and measured results are presented to demonstrate that the proposed triband monopole antenna with a good impedance bandwidth and omnidirectional radiation patterns is well suitable for WLAN and WiMAX communication applications.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2021 ◽  
Author(s):  
Shiney Thankachan ◽  
Binu Paul

Abstract This paper proposes a new metamaterial inspired electrically small multi-band monopole antenna. The proposed antenna is capable of operating at DCS 1800 in the lower band. At the same time, in the higher band, it covers two wireless local area network (WLAN) bands at 2.4 and 5.2 GHz. This paper describes the design and detailed analysis of an electrically small (ka = 0.64 < 1) antenna with a -10dB fractional bandwidth of 2.01%, 1.64% and 2.71% for triple-band operations with centre frequencies 1.80, 2.45 and 5.17 GHz. The compactness is achieved by the application of double negative metamaterial on a monopole antenna operating at 9 GHz. The proposed antenna has an overall compact electrical size 0.14 λ0 × 0.14λ0 × 0.01 λ0 at 1.8 GHz and physical dimensions 24 × 24 × 1.6 mm3 including the ground. In this proposed ESA a second DNG structure is also incorporated to enhance its gain. This enables reliable operations at DCS 1800 and WLAN frequencies 2.4 and 5.2 GHz.


2021 ◽  
Vol 36 (2) ◽  
pp. 139-144
Author(s):  
Lan Nguyen

In this paper, the design of an antenna array with enhanced bandwidth is presented. The antenna array includes 16 elements (4 x 4) based on RT5880 with height of 1.575 mm, dielectric constant of 2.2 and loss tangent of 0.0009 and it is yielded at the central frequency of 5.8 GHz for Wireless Local Area Network (WLAN) applications. In addition, in order to enhance bandwidth for antenna, the paper proposes a new metasurface. The metasurface, which is a lattice of 3 x 3 cells, is printed on a substrate of FR4 (h = 1.6 mm, ɛr = 4.4, and tanδ = 0.02) and it acts as an artificial magnetic conductor reflector. The final prototype with an overall dimension of 123 x 120 x 3.315 mm3 was fabricated and measured. The antenna witnesses an impedance bandwidth of 5.1-7.5 GHz at -10 dB (41%) and a peak gain of 17.65 dBi for measurement. The simulation results are confirmed by measurement ones to verify the performance of the proposed antenna.


2016 ◽  
Vol 9 (5) ◽  
pp. 1123-1129 ◽  
Author(s):  
Wang Ren ◽  
Shu-Wei Hu ◽  
Chen Jiang

In this paper, an asymmetric coplanar strip (ACS)-fed quad-band monopole antenna for the global positioning system (GPS), wireless local area network (WLAN), and worldwide interoperability for microwave access (WiMAX) applications is proposed. It is composed of an F-shaped monopole and a partial ground plane, which are both printed on one side of a low-cost FR4 substrate with a compact volume of 40 × 20 × 1.6 mm3. By cutting an open-ended Γ-shaped slot into the F-shaped monopole, four distinct resonant modes are successfully generated. The design process, especially the geometrical configuration of the critical Γ-shaped slot is studied in detail. The proposed antenna has been fabricated and experimental results show that the −10 dB impedance bandwidth can fully cover the 1.575-GHz GPS (1.57–1.59 GHz), 2.4/5.2/5.8-GHz WLAN (2.4–2.485, 5.15–5.35, and 5.725–5.825 GHz), and 2.5/3.5/5.5-GHz WiMAX (2.50–2.69, 3.30–3.70, and 5.25–5.85 GHz) applications with nearly omni-directional radiation patterns and satisfactory gains.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Jaswinder Kaur ◽  
Rajesh Khanna ◽  
Machavaram Kartikeyan

In the present work, a novel multistrip monopole antenna fed by a cross-shaped stripline comprising one vertical and two horizontal strips has been proposed for wireless local area network (WLAN)/Industrial, Scientific, and Medical band (ISM)/International Mobile Telecommunication (IMT)/BLUETOOTH/Worldwide Interoperability for Microwave Access (WiMAX) applications. The designed antenna has a small overall size of 20 × 30 mm2. The goal of this paper is to use defected ground structure (DGS) in the proposed antenna design to achieve dual-band operation with appreciable impedance bandwidth at the two operating modes satisfying several communication standards simultaneously. The antenna was simulated using Computer Simulation Technology Microwave Studio (CST MWS) V9 based on the finite integration technique (FIT) with perfect boundary approximation. Finally, the proposed antenna was fabricated and some performance parameters were measured to validate against simulation results. The design procedure, parametric analysis, simulation results along with measurements for this multistrip monopole antenna using DGS operating simultaneously at WLAN (2.4/5.8 GHz), IMT (2.35 GHz), BLUETOOTH (2.45 GHz), and WiMAX (5.5 GHz) are presented.


2021 ◽  
Vol 11 (4) ◽  
pp. 294-304
Author(s):  
Vamshi Kollipara ◽  
Samineni Peddakrishna ◽  
Jayendra Kumar

A triple band-notched ultra-wideband (UWB) monopole antenna using a planar electromagnetic bandgap (EBG) design is proposed. The EBG unit cell composed by an Archimedean spiral and inter-digital capacitance demonstrates the notch frequencies. The antenna with EBG cells near the feed line occupies only 30 × 36 mm2 with triple band-rejection characteristics. The three notched bands at 4.2 GHz, 5.2 GHz, and 9.1 GHz can be used in C-band satellite downlink, wireless local area network (WLAN), and X-band radio location for naval radar or military required applications. In addition, the proposed design is flexible to tune different notched bands by altering the EBG dimensions. The parametric analysis is studied in details after placing the EBG unit cells near the feed line to show the coupling effect. The input impedance and surface current distribution analysis are also analyzed to understand the effect of EBG at notch frequencies. The proposed design prototype is fabricated and characterized. A fairly considerable agreement is observed between simulated and measured results.


Author(s):  
Son Xuat Ta ◽  
Ikmo Park ◽  
Chien Dao-Ngoc

In this paper, a hybrid of T-dipole and quasi-Yagi antenna is presented for using in dual-band Wireless Local Area Network (WLAN) access point. The antenna is made up of combination of T-dipole and quasi-Yagi antenna structures, which are distinctly designed to operate at 2.4 and 5.5 GHz frequency bands. A simply integrated balun that consists of a curved microstrip line and a circular slot to allow broadband characteristic is used to feed the antenna. The final antenna design presents measured bandwidths (RL ≤ − 10 dB) of 2.35 – 2.55 GHz and 4.30 – 6.56 GHz which cover completely the two bands of WLAN. Simulated and measured results of peak gain and radiation patterns in both E- and H-plane validate potential of the design.


Sign in / Sign up

Export Citation Format

Share Document